Speaker_Verification_Demo / src /streamlit_app.py
2pift's picture
Application desing
22a76e8
from pathlib import Path
import ffmpeg
import keras
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
import tensorflow as tf
from huggingface_hub import hf_hub_download
# ========= App title =========
st.title("Speaker Verification - Demo")
st.markdown(
"""
**This demo was prepared as part of an ML project on speaker verification.**
Full documentation: [github.com/JakubMk/speaker_verification_project](https://github.com/JakubMk/speaker_verification_project)
**How it works:**
1. **Load the model.**
2. **Upload audio files** or **record** short speech samples.
3. **Test the model** by clicking **“Verify Speaker”**.
"""
)
# ========= Session state =========
if "load_model_button" not in st.session_state:
st.session_state.load_model_button = False
if "audio_left" not in st.session_state:
st.session_state.audio_left = None
if "audio_right" not in st.session_state:
st.session_state.audio_right = None
# ========= UI: choose model =========
model_df = pd.DataFrame({"first column": ["verification_model_resnet34_512dim"]})
option = st.selectbox("Choose a model to test:", model_df["first column"])
st.button("Load the model", on_click=lambda: st.session_state.update(load_model_button=True))
# ========= Helpers =========
FS = 16000 # target sample rate
WT = 48560 # window length in samples
EXT2FMT = {
"wav": "wav",
"mp3": "mp3",
"ogg": "ogg",
"aac": "aac",
"m4a": "mp4"
}
def infer_input_format(name: str) -> str | None:
if name and "." in name:
ext = name.rsplit(".", 1)[-1].lower()
return EXT2FMT.get(ext)
return None
@st.cache_data(show_spinner=False)
def bytes_to_pcm16k_mono(data: bytes, in_format: str | None) -> np.ndarray:
"""
Converts the input audio (any supported container) to raw PCM 16 kHz mono 16-bit LE and returns it as float32 in the range [-1, 1].
Cached by (bytes, format).
"""
stream = (
ffmpeg
.input("pipe:0", **({"format": in_format} if in_format else {}))
.output("pipe:1", format="s16le", acodec="pcm_s16le", ar=str(FS), ac=1)
.global_args("-hide_banner")
)
out, err = ffmpeg.run(stream, capture_stdout=True, capture_stderr=True, input=data)
audio = np.frombuffer(out, dtype="<i2").astype(np.float32) / 32768.0
if audio.size < WT:
# Padding (centered)
audio = np.pad(audio, (int((WT - audio.size) / 2) + 1, int((WT - audio.size) / 2) + 1), mode="constant")
return audio
def plot_waveform(audio_np: np.ndarray, fs: int = FS, title: str = "Waveform"):
t = np.arange(audio_np.size) / fs if audio_np.size else np.array([0, 1e-6])
fig, ax = plt.subplots()
ax.plot(t, audio_np)
ax.set_title(title)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Amplitude")
ax.margins(x=0, y=0)
if audio_np.size:
ax.set_xlim(t[0], t[-1])
return fig
@st.cache_resource(show_spinner=True)
def load_model_from_hub(repo_id: str, filename: str, revision: str):
"""Downloads and loads a Keras model (cached resource – stored in memory)."""
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type="model",
revision=revision,
)
# Import custom modules
import custom_models, custom_losses
model = keras.models.load_model(model_path)
if hasattr(model, "return_embedding"):
model.return_embedding = True
with open(model_path, "rb") as f:
model_bytes = f.read()
return model, model_path, model_bytes
def handle_record(label: str) -> np.ndarray | None:
rec = st.audio_input(label)
if not rec:
return None
try:
audio_np = bytes_to_pcm16k_mono(rec.getvalue(), in_format="wav")
return audio_np
except ffmpeg.Error as e:
st.error("FFmpeg failed while processing recording.")
st.code(e.stderr.decode("utf-8", "ignore"))
return None
def handle_upload(label: str, key: str) -> np.ndarray | None:
file = st.file_uploader(
label,
type=["wav", "m4a", "aac", "mp3", "ogg", "webm", "flac"],
key=key,
)
if not file:
return None
in_fmt = infer_input_format(file.name)
try:
audio_np = bytes_to_pcm16k_mono(file.getvalue(), in_fmt)
return audio_np
except ffmpeg.Error as e:
st.error("FFmpeg failed while converting uploaded file.")
st.code(e.stderr.decode("utf-8", "ignore"))
return None
def delta(x):
"""Computes first-order derivative along time axis."""
return x[:, 1:] - x[:, :-1]
def array_to_spectrogram(audio_np: np.ndarray,
audio_in_samples: int = 48560,
window_length: int = 400,
step_length: int = 160,
fft_length: int = 1023
) -> tf.Tensor:
audio = tf.convert_to_tensor(audio_np, dtype=tf.float32)
audio_length = audio_np.size
random_int = tf.random.uniform(shape=(), minval=0, maxval=(audio_length-audio_in_samples), dtype=tf.int32)
stft = tf.signal.stft(audio[random_int:(random_int+audio_in_samples)],
frame_length=window_length,
frame_step=step_length,
fft_length=fft_length)
spectrogram = tf.abs(stft)
spectrogram = tf.transpose(spectrogram) # shape: (freq, time)
spectrogram = tf.math.log1p(spectrogram)
spectrogram_delta = delta(spectrogram)
spectrogram_delta2 = delta(spectrogram_delta)
return tf.stack([spectrogram[:, :-2],
spectrogram_delta[:, :-1],
spectrogram_delta2],
axis=-1) # shape: (freq, time, 3)
@st.cache_data(show_spinner=True)
def verify_speakers(model, audio_left, audio_right, margin):
spec_left = array_to_spectrogram(audio_left)[tf.newaxis, ...]
spec_right = array_to_spectrogram(audio_right)[tf.newaxis, ...]
emb_left = model.predict(spec_left, verbose=0)
emb_right = model.predict(spec_right, verbose=0)
cosine_similarity = tf.linalg.matmul(emb_left, emb_right, transpose_b=True)
cosine_similarity = float(cosine_similarity.numpy().squeeze())
if cosine_similarity >= margin:
st.success("Both utterances belong to the same speaker.")
else:
st.warning("The utterances are from different speakers.")
st.caption(f"Cosine similarity: {cosine_similarity:.4f}, margin: {margin:.4f}")
# ========= Load model =========
if st.session_state.load_model_button:
try:
model, model_path, model_bytes = load_model_from_hub(
repo_id="2pift/sv-resnet34-keras",
filename="best_model.keras",
revision="v1.0.0",
)
st.success("Model loaded — you can upload audio files or record utterances.")
st.download_button(
"(Option) Download the model file",
data=model_bytes,
file_name="verification_model_resnet34_512dim.keras",
)
except Exception as e:
st.error(f"Error loading model: {e}")
# ========= Two columns =========
left_column, right_column = st.columns(2)
with left_column:
st.subheader("Voice Sample 1")
record_left = st.checkbox("Record first voice sample", key="chk_record_left")
if record_left:
audio_left = handle_record("Record (left)")
else:
audio_left = handle_upload("Upload left audio", key="file_left")
if audio_left is not None:
st.session_state.audio_left = audio_left
fig = plot_waveform(audio_left, FS, "Left audio waveform")
st.pyplot(fig, width="stretch")
st.caption(f"Samples: {audio_left.size} • Duration: {audio_left.size/FS:.2f}s")
with right_column:
st.subheader("Voice Sample 2")
record_right = st.checkbox("Record second voice sample", key="chk_record_right")
if record_right:
audio_right = handle_record("Record (right)")
else:
audio_right = handle_upload("Upload right audio", key="file_right")
if audio_right is not None:
st.session_state.audio_right = audio_right
fig = plot_waveform(audio_right, FS, "Right audio waveform")
st.pyplot(fig, width="stretch")
st.caption(f"Samples: {audio_right.size} • Duration: {audio_right.size/FS:.2f}s")
if audio_left is not None and audio_right is not None:
margin = st.slider('Selected margin:', -1.0, 1.0, 0.26, 0.01)
verify_button = st.button("Verify Speaker")
if verify_button:
try:
verify_speakers(model, audio_left, audio_right, margin)
except Exception as e:
st.error(f"Error during verification: {e}")