Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import json | |
| import random | |
| import requests | |
| import os | |
| from datetime import datetime | |
| from tinytroupe.simulation_manager import SimulationManager, SimulationConfig | |
| from tinytroupe.agent.social_types import Content | |
| from tinytroupe.agent.tiny_person import TinyPerson | |
| import tinytroupe.openai_utils as openai_utils | |
| # Initialize Simulation Manager | |
| simulation_manager = SimulationManager() | |
| REMOTE_BACKEND = "https://auxteam-tiny-factory.hf.space" | |
| def generate_personas(business_description, customer_profile, num_personas, api_key=None): | |
| if api_key: os.environ["BLABLADOR_API_KEY"] = api_key | |
| use_remote = random.random() < 0.5 | |
| if use_remote: | |
| try: | |
| response = requests.post(f"{REMOTE_BACKEND}/api/generate_personas", json={"data": [business_description, customer_profile, num_personas, ""]}, timeout=120) | |
| if response.status_code == 200: return response.json()["data"][0] | |
| except: pass | |
| from tinytroupe.factory.tiny_person_factory import TinyPersonFactory | |
| factory = TinyPersonFactory(context=f"{business_description} {customer_profile}", total_population_size=int(num_personas)) | |
| personas = factory.generate_people(number_of_people=int(num_personas)) | |
| return [p._persona for p in personas] | |
| def start_simulation(name, content_text, format_type, persona_count, network_type): | |
| config = SimulationConfig(name=name, persona_count=int(persona_count), network_type=network_type) | |
| sim = simulation_manager.create_simulation(config) | |
| content = Content(text=content_text, format=format_type) | |
| simulation_manager.run_simulation(sim.id, content) | |
| nodes = [{"id": p.name, "label": p.name, "title": f"<b>{p.name}</b><br>{p.minibio()}", "full_bio": json.dumps(p._persona, indent=2)} for p in sim.personas] | |
| edges = [{"from": e.connection_id.split('_')[0], "to": e.connection_id.split('_')[1]} for e in sim.network.edges] | |
| analysis_df = pd.DataFrame(sim.analysis_results) | |
| if analysis_df.empty: analysis_df = pd.DataFrame(columns=["persona_name", "opinion", "analysis", "implications"]) | |
| return analysis_df, nodes, edges, sim.id | |
| def get_persona_details(sim_id, persona_name): | |
| persona = simulation_manager.get_persona(sim_id, persona_name) | |
| return json.dumps(persona, indent=2) if persona else "Not found" | |
| # API functions for backward compatibility | |
| def generate_social_network_api(name, persona_count, network_type, focus_group_name=None): | |
| config = SimulationConfig(name=name, persona_count=int(persona_count), network_type=network_type) | |
| sim = simulation_manager.create_simulation(config, focus_group_name) | |
| return {"simulation_id": sim.id, "persona_count": len(sim.personas)} | |
| def predict_engagement_api(simulation_id, content_text, format_type): | |
| sim = simulation_manager.get_simulation(simulation_id) | |
| if not sim: return {"error": "Simulation not found"} | |
| content = Content(text=content_text, format=format_type) | |
| results = [] | |
| for p in sim.personas: | |
| reaction = p.predict_reaction(content) | |
| results.append({"persona": p.name, "will_engage": reaction.will_engage, "probability": reaction.probability}) | |
| return results | |
| def start_simulation_async_api(simulation_id, content_text, format_type): | |
| content = Content(text=content_text, format=format_type) | |
| simulation_manager.run_simulation(simulation_id, content, background=True) | |
| return {"status": "started", "simulation_id": simulation_id} | |
| def get_simulation_status_api(simulation_id): | |
| sim = simulation_manager.get_simulation(simulation_id) | |
| if not sim: return {"error": "Simulation not found"} | |
| return {"status": sim.status, "progress": sim.progress} | |
| def send_chat_message_api(simulation_id, sender, message): | |
| return simulation_manager.send_chat_message(simulation_id, sender, message) | |
| def get_chat_history_api(simulation_id): | |
| return simulation_manager.get_chat_history(simulation_id) | |
| def generate_variants_api(original_content, num_variants): | |
| variants = simulation_manager.variant_generator.generate_variants(original_content, int(num_variants)) | |
| return [v.text for v in variants] | |
| def list_simulations_api(): | |
| return simulation_manager.list_simulations() | |
| def list_personas_api(simulation_id): | |
| return simulation_manager.list_personas(simulation_id) | |
| def get_persona_api(simulation_id, persona_name): | |
| return simulation_manager.get_persona(simulation_id, persona_name) | |
| def delete_simulation_api(simulation_id): | |
| success = simulation_manager.delete_simulation(simulation_id) | |
| return {"success": success} | |
| def export_simulation_api(simulation_id): | |
| return simulation_manager.export_simulation(simulation_id) | |
| def get_network_graph_api(simulation_id): | |
| sim = simulation_manager.get_simulation(simulation_id) | |
| if not sim: return {"error": "Simulation not found"} | |
| nodes = [{"id": p.name, "label": p.name, "role": p._persona.get("occupation")} for p in sim.personas] | |
| edges = [{"source": e.connection_id.split('_')[0], "target": e.connection_id.split('_')[1]} for e in sim.network.edges] | |
| return {"nodes": nodes, "edges": edges} | |
| def list_focus_groups_api(): | |
| return simulation_manager.list_focus_groups() | |
| def save_focus_group_api(name, simulation_id): | |
| sim = simulation_manager.get_simulation(simulation_id) | |
| if not sim: return {"error": "Simulation not found"} | |
| simulation_manager.save_focus_group(name, sim.personas) | |
| return {"status": "success", "name": name} | |
| # UI Layout | |
| with gr.Blocks(css=".big-input textarea { height: 300px !important; } #mesh-network-container { height: 600px; background: #101622; border-radius: 12px; }", title="Tiny Factory") as demo: | |
| gr.HTML('<script src="https://unpkg.com/vis-network/standalone/umd/vis-network.min.js"></script>') | |
| gr.Markdown("# π Tiny Factory: Social Simulation Dashboard") | |
| current_sim_id = gr.State() | |
| with gr.Tabs(): | |
| with gr.Tab("Simulation Dashboard"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Content Input") | |
| sim_name = gr.Textbox(label="Simulation Name", value="Market Pulse") | |
| content_input = gr.Textbox(label="Content (Blog, LinkedIn, etc.)", lines=10, elem_classes="big-input") | |
| content_format = gr.Dropdown(choices=["Blog Post", "LinkedIn Update", "Tweet", "Email"], label="Format", value="LinkedIn Update") | |
| num_personas_sim = gr.Slider(minimum=5, maximum=50, value=10, step=1, label="Number of Personas") | |
| network_type_sim = gr.Dropdown(choices=["scale_free", "small_world"], label="Network Topology", value="scale_free") | |
| run_btn = gr.Button("π Run Simulation", variant="primary") | |
| with gr.Column(scale=2): | |
| gr.Markdown("### πΈοΈ Persona Mesh Network (Hover for Bio, Click for Details)") | |
| gr.HTML('<div id="mesh-network-container"></div>') | |
| with gr.Accordion("Detailed Persona Profile", open=False): | |
| detail_name = gr.Textbox(label="Name", interactive=False) | |
| detail_json = gr.Code(label="Profile JSON", language="json") | |
| gr.Markdown("### π Simulation Analysis & Implications (Helmholtz alias-huge)") | |
| analysis_table = gr.Dataframe(headers=["persona_name", "opinion", "analysis", "implications"], label="Analysis Results") | |
| with gr.Tab("Persona Generator"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| biz_desc = gr.Textbox(label="Business Description", lines=5) | |
| cust_prof = gr.Textbox(label="Customer Profile", lines=5) | |
| gen_count = gr.Number(label="Count", value=5) | |
| blablador_key = gr.Textbox(label="API Key (Optional)", type="password") | |
| gen_btn = gr.Button("Generate Personas") | |
| with gr.Column(): | |
| gen_out = gr.JSON(label="Generated Personas") | |
| nodes_state = gr.State([]) | |
| edges_state = gr.State([]) | |
| # Hidden components for JS interaction | |
| js_trigger = gr.Textbox(visible=False, elem_id="js_trigger_textbox") | |
| js_trigger_btn = gr.Button("trigger", visible=False, elem_id="js_trigger_btn") | |
| run_btn.click( | |
| fn=start_simulation, | |
| inputs=[sim_name, content_input, content_format, num_personas_sim, network_type_sim], | |
| outputs=[analysis_table, nodes_state, edges_state, current_sim_id] | |
| ).then( | |
| fn=None, inputs=[nodes_state, edges_state], outputs=None, | |
| js="""(nodes, edges) => { | |
| const container = document.getElementById('mesh-network-container'); | |
| const data = { nodes: new vis.DataSet(nodes), edges: new vis.DataSet(edges) }; | |
| const options = { | |
| nodes: { shape: 'dot', size: 25, font: { color: '#fff', size: 16 }, color: { background: '#135bec', border: '#fff' }, shadow: true }, | |
| edges: { color: 'rgba(19,91,236,0.4)', width: 2, smooth: { type: 'continuous' } }, | |
| physics: { enabled: true, stabilization: false, barnesHut: { gravitationalConstant: -3000 } } | |
| }; | |
| const network = new vis.Network(container, data, options); | |
| network.on("click", (params) => { | |
| if(params.nodes.length) { | |
| const node = nodes.find(n => n.id === params.nodes[0]); | |
| const trigger = document.getElementById('js_trigger_textbox').querySelector('input'); | |
| trigger.value = node.id; | |
| trigger.dispatchEvent(new Event('input')); | |
| document.getElementById('js_trigger_btn').click(); | |
| } | |
| }); | |
| setInterval(() => { network.stopSimulation(); network.startSimulation(); }, 4000); | |
| }""" | |
| ) | |
| def on_persona_click(name, sim_id): | |
| details = simulation_manager.get_persona(sim_id, name) | |
| return name, json.dumps(details, indent=2) | |
| js_trigger_btn.click(on_persona_click, inputs=[js_trigger, current_sim_id], outputs=[detail_name, detail_json]) | |
| gen_btn.click(generate_personas, inputs=[biz_desc, cust_prof, gen_count, blablador_key], outputs=gen_out, api_name="generate_personas") | |
| # API endpoints (backward compatibility) | |
| with gr.Tab("API", visible=False): | |
| gr.Button("find_best_persona").click(lambda x: {"message": "Searching: "+x}, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="find_best_persona") | |
| gr.Button("generate_social_network").click(generate_social_network_api, inputs=[gr.Textbox(), gr.Number(), gr.Dropdown(choices=["scale_free", "small_world"]), gr.Textbox()], outputs=gr.JSON(), api_name="generate_social_network") | |
| gr.Button("predict_engagement").click(predict_engagement_api, inputs=[gr.Textbox(), gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="predict_engagement") | |
| gr.Button("start_simulation_async").click(start_simulation_async_api, inputs=[gr.Textbox(), gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="start_simulation_async") | |
| gr.Button("get_simulation_status").click(get_simulation_status_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="get_simulation_status") | |
| gr.Button("send_chat_message").click(send_chat_message_api, inputs=[gr.Textbox(), gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="send_chat_message") | |
| gr.Button("get_chat_history").click(get_chat_history_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="get_chat_history") | |
| gr.Button("generate_variants").click(generate_variants_api, inputs=[gr.Textbox(), gr.Number()], outputs=gr.JSON(), api_name="generate_variants") | |
| gr.Button("list_simulations").click(list_simulations_api, outputs=gr.JSON(), api_name="list_simulations") | |
| gr.Button("list_personas").click(list_personas_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="list_personas") | |
| gr.Button("get_persona").click(get_persona_api, inputs=[gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="get_persona") | |
| gr.Button("delete_simulation").click(delete_simulation_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="delete_simulation") | |
| gr.Button("export_simulation").click(export_simulation_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="export_simulation") | |
| gr.Button("get_network_graph").click(get_network_graph_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="get_network_graph") | |
| gr.Button("list_focus_groups").click(list_focus_groups_api, outputs=gr.JSON(), api_name="list_focus_groups") | |
| gr.Button("save_focus_group").click(save_focus_group_api, inputs=[gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="save_focus_group") | |
| if __name__ == "__main__": | |
| demo.launch() | |