Spaces:
Running
Running
| from typing import List, Dict, Any, Optional | |
| import numpy as np | |
| from tinytroupe.agent import TinyPerson | |
| from tinytroupe.agent.social_types import Content, Reaction | |
| from tinytroupe.social_network import NetworkTopology | |
| from tinytroupe.features import ContentFeatureExtractor, PersonaFeatureExtractor, InteractionFeatureExtractor | |
| from tinytroupe.agent.agent_traits import TraitBasedBehaviorModel | |
| class EngagementPredictor: | |
| """Predicts whether persona will engage with content""" | |
| def __init__(self): | |
| self.content_extractor = ContentFeatureExtractor() | |
| self.persona_extractor = PersonaFeatureExtractor() | |
| self.interaction_extractor = InteractionFeatureExtractor() | |
| self.trait_model = TraitBasedBehaviorModel() | |
| def predict(self, persona: TinyPerson, content: Content, network: NetworkTopology) -> float: | |
| """Predict engagement probability""" | |
| content_features = self.content_extractor.extract(content) | |
| persona_features = self.persona_extractor.extract(persona) | |
| interaction_features = self.interaction_extractor.extract(persona, content, network) | |
| # Get base probability from trait-based model | |
| trait_prob = self.trait_model.compute_action_probability(persona, "engage", content) | |
| # Combine with other signals | |
| prob = (trait_prob * 0.5 + | |
| interaction_features["topic_alignment"] * 0.3 + | |
| persona_features["engagement_rate"] * 0.1 + | |
| content_features["sentiment_score"] * 0.1) | |
| return max(0.0, min(1.0, prob)) | |
| class ViralityPredictor: | |
| def predict_cascade_size(self, content: Content, seed_personas: List[str], network: NetworkTopology) -> int: | |
| return len(seed_personas) * 2 # Placeholder | |