File size: 7,355 Bytes
5ddcfe5 06e3736 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 06e3736 4410de7 06e3736 5ddcfe5 06e3736 a044b52 5ddcfe5 4410de7 5ddcfe5 deb30d8 5ddcfe5 06e3736 57148f8 06e3736 deb30d8 06e3736 5ddcfe5 06e3736 deb30d8 5ddcfe5 deb30d8 4410de7 5ddcfe5 deb30d8 5ddcfe5 06e3736 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 5ddcfe5 deb30d8 06e3736 4410de7 06e3736 5ddcfe5 deb30d8 5ddcfe5 deb30d8 4410de7 deb30d8 5ddcfe5 06e3736 57148f8 5ddcfe5 deb30d8 06e3736 deb30d8 5ddcfe5 06e3736 deb30d8 5ddcfe5 06e3736 deb30d8 06e3736 deb30d8 06e3736 deb30d8 5ddcfe5 deb30d8 06e3736 deb30d8 06e3736 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import asyncio
import os
import time
import traceback
from typing import List, Optional
import re
import tiktoken
from cohere import AsyncClient
from dotenv import load_dotenv
from llama_index.core import Document, QueryBundle
from llama_index.core.async_utils import run_async_tasks
from llama_index.core.retrievers import (
BaseRetriever,
KeywordTableSimpleRetriever,
VectorIndexRetriever,
)
from llama_index.core.schema import MetadataMode, NodeWithScore, QueryBundle, TextNode
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.vector_stores import (
FilterCondition,
FilterOperator,
MetadataFilter,
MetadataFilters,
)
from rapidfuzz import fuzz, process # ✨ NEW for typo correction
load_dotenv()
# ✨ New Function: Fuzzy correction for queries
def normalize_and_correct_query(query: str, known_terms: List[str]) -> str:
cleaned = re.sub(r"[^\w\s]", "", query.lower())
words = cleaned.split()
corrected_words = []
for word in words:
match, score, _ = process.extractOne(word, known_terms, scorer=fuzz.ratio)
if score > 80:
corrected_words.append(match)
else:
corrected_words.append(word)
return " ".join(corrected_words)
class AsyncCohereRerank(CohereRerank):
def __init__(
self,
top_n: int = 5,
model: str = "rerank-english-v3.0",
api_key: Optional[str] = None,
) -> None:
super().__init__(top_n=top_n, model=model, api_key=api_key)
self._api_key = api_key
self._model = model
self._top_n = top_n
async def postprocess_nodes(
self,
nodes: List[NodeWithScore],
query_bundle: Optional[QueryBundle] = None,
) -> List[NodeWithScore]:
if query_bundle is None:
raise ValueError("Query bundle must be provided.")
if len(nodes) == 0:
return []
async_client = AsyncClient(api_key=self._api_key)
texts = [node.node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes]
results = await async_client.rerank(
model=self._model,
top_n=self._top_n,
query=query_bundle.query_str,
documents=texts,
)
return [
NodeWithScore(
node=nodes[result.index].node,
score=result.relevance_score
)
for result in results.results
]
class CustomRetriever(BaseRetriever):
"""Custom retriever that performs both semantic search and hybrid search."""
def __init__(
self,
vector_retriever: VectorIndexRetriever,
document_dict: dict,
keyword_retriever=None,
mode: str = "AND",
) -> None:
self._vector_retriever = vector_retriever
self._document_dict = document_dict
self._keyword_retriever = keyword_retriever
if mode not in ("AND", "OR"):
raise ValueError("Invalid mode.")
self._mode = mode
super().__init__()
async def _process_retrieval(
self, query_bundle: QueryBundle, is_async: bool = True
) -> List[NodeWithScore]:
query_bundle.query_str = query_bundle.query_str.replace("\ninput is ", "").rstrip()
# ✅ Typo correction using fuzzy logic
known_keywords = [
"accounting", "audit", "assurance", "consulting", "tax", "advisory", "technology",
"outsourcing", "virtual cfo", "services", "team", "leadership", "india", "usa", "projects",
"cloud", "data", "ai", "ml", "education", "training", "academy", "sox", "compliance",
"clients", "mission", "vision", "culture", "offices", "partners", "strategy"
]
corrected_query = normalize_and_correct_query(query_bundle.query_str, known_keywords)
query_bundle.query_str = corrected_query
start = time.time()
if is_async:
nodes = await self._vector_retriever.aretrieve(query_bundle)
else:
nodes = self._vector_retriever.retrieve(query_bundle)
keyword_nodes = []
if self._keyword_retriever:
if is_async:
keyword_nodes = await self._keyword_retriever.aretrieve(query_bundle)
else:
keyword_nodes = self._keyword_retriever.retrieve(query_bundle)
vector_ids = {n.node.node_id for n in nodes}
keyword_ids = {n.node.node_id for n in keyword_nodes}
combined_dict = {n.node.node_id: n for n in nodes}
combined_dict.update({n.node.node_id: n for n in keyword_nodes})
if not self._keyword_retriever or not keyword_nodes:
retrieve_ids = vector_ids
else:
retrieve_ids = (
vector_ids.intersection(keyword_ids)
if self._mode == "AND"
else vector_ids.union(keyword_ids)
)
nodes = [combined_dict[rid] for rid in retrieve_ids]
nodes = self._filter_nodes_by_unique_doc_id(nodes)
for node in nodes:
doc_id = node.node.source_node.node_id
if node.metadata.get("retrieve_doc", False):
doc = self._document_dict.get(doc_id)
if doc:
node.node.text = doc.text
node.node.node_id = doc_id
try:
reranker = (
AsyncCohereRerank(top_n=5, model="rerank-english-v3.0")
if is_async
else CohereRerank(top_n=5, model="rerank-english-v3.0")
)
nodes = (
await reranker.postprocess_nodes(nodes, query_bundle)
if is_async
else reranker.postprocess_nodes(nodes, query_bundle)
)
except Exception as e:
print(f"Error during reranking: {type(e).__name__}: {str(e)}")
traceback.print_exc()
nodes_filtered = self._filter_by_score_and_tokens(nodes)
duration = time.time() - start
print(f"Retrieving nodes took {duration:.2f}s")
return nodes_filtered[:5]
def _filter_nodes_by_unique_doc_id(
self, nodes: List[NodeWithScore]
) -> List[NodeWithScore]:
unique_nodes = {}
for node in nodes:
doc_id = node.node.source_node.node_id
if doc_id is not None and doc_id not in unique_nodes:
unique_nodes[doc_id] = node
return list(unique_nodes.values())
def _filter_by_score_and_tokens(
self, nodes: List[NodeWithScore]
) -> List[NodeWithScore]:
nodes_filtered = []
total_tokens = 0
enc = tiktoken.encoding_for_model("gpt-4")
for node in nodes:
if node.score < 0.10:
continue
node_tokens = len(enc.encode(node.node.text))
if total_tokens + node_tokens > 100_000:
break
total_tokens += node_tokens
nodes_filtered.append(node)
return nodes_filtered
async def _aretrieve(self, query_bundle: QueryBundle, **kwargs) -> List[NodeWithScore]:
return await self._process_retrieval(query_bundle, is_async=True)
def _retrieve(self, query_bundle: QueryBundle, **kwargs) -> List[NodeWithScore]:
return asyncio.run(self._process_retrieval(query_bundle, is_async=False))
|