Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 2 |
from datasets import load_dataset
|
| 3 |
import faiss
|
|
@@ -5,10 +6,23 @@ import numpy as np
|
|
| 5 |
import streamlit as st
|
| 6 |
|
| 7 |
# Load the datasets from Hugging Face
|
| 8 |
-
datasets_dict = {
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Load the T5 model and tokenizer for summarization
|
| 14 |
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
|
@@ -26,37 +40,6 @@ def prepare_dataset(dataset_name):
|
|
| 26 |
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
| 27 |
titles = dataset['train']['title'][:100] # Get corresponding titles
|
| 28 |
|
| 29 |
-
prepare_dataset(selected_dataset)
|
| 30 |
-
|
| 31 |
-
# Function to embed text for retrieval
|
| 32 |
-
def embed_text(text):
|
| 33 |
-
input_ids = t5_tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
| 34 |
-
with torch.no_grad():
|
| 35 |
-
outputs = t5_model.encoder(input_ids)
|
| 36 |
-
return outputs.last_hidden_state.mean(dim=1).numpy()
|
| 37 |
-
|
| 38 |
-
# Create embeddings for the documents
|
| 39 |
-
doc_embeddings = np.vstack([embed_text(doc) for doc in documents]).astype(np.float32)
|
| 40 |
-
|
| 41 |
-
# Initialize FAISS index
|
| 42 |
-
index = faiss.IndexFlatL2(doc_embeddings.shape[1])
|
| 43 |
-
index.add(doc_embeddings)
|
| 44 |
-
|
| 45 |
-
# Define functions for retrieving and summarizing cases
|
| 46 |
-
def retrieve_cases(query, top_k=3):
|
| 47 |
-
query_embedding = embed_text(query)
|
| 48 |
-
distances, indices = index.search(query_embedding, top_k)
|
| 49 |
-
return [(documents[i], titles[i]) for i in indices[0]] # Return documents and their titles
|
| 50 |
-
|
| 51 |
-
def summarize_cases(cases):
|
| 52 |
-
summaries = []
|
| 53 |
-
for case, _ in cases:
|
| 54 |
-
input_ids = t5_tokenizer.encode(case, return_tensors="pt", max_length=512, truncation=True)
|
| 55 |
-
outputs = t5_model.generate(input_ids, max_length=60, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
| 56 |
-
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 57 |
-
summaries.append(summary)
|
| 58 |
-
return summaries
|
| 59 |
-
|
| 60 |
# Streamlit App Code
|
| 61 |
st.title("Legal Case Summarizer")
|
| 62 |
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
|
|
|
| 1 |
+
import torch
|
| 2 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 3 |
from datasets import load_dataset
|
| 4 |
import faiss
|
|
|
|
| 6 |
import streamlit as st
|
| 7 |
|
| 8 |
# Load the datasets from Hugging Face
|
| 9 |
+
datasets_dict = {}
|
| 10 |
+
|
| 11 |
+
# Function to load datasets safely
|
| 12 |
+
def load_datasets():
|
| 13 |
+
global datasets_dict
|
| 14 |
+
try:
|
| 15 |
+
datasets_dict["BillSum"] = load_dataset("billsum")
|
| 16 |
+
except Exception as e:
|
| 17 |
+
st.error(f"Error loading BillSum dataset: {e}")
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
datasets_dict["EurLex"] = load_dataset("eurlex", trust_remote_code=True) # Set trust_remote_code=True
|
| 21 |
+
except Exception as e:
|
| 22 |
+
st.error(f"Error loading EurLex dataset: {e}")
|
| 23 |
+
|
| 24 |
+
# Load datasets at the start
|
| 25 |
+
load_datasets()
|
| 26 |
|
| 27 |
# Load the T5 model and tokenizer for summarization
|
| 28 |
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
|
|
|
| 40 |
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
| 41 |
titles = dataset['train']['title'][:100] # Get corresponding titles
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Streamlit App Code
|
| 44 |
st.title("Legal Case Summarizer")
|
| 45 |
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|