Spaces:
Sleeping
Sleeping
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| # Cache for loaded models | |
| model_cache = {} | |
| def load_model(model_name): | |
| """Load and cache a Hugging Face model.""" | |
| if model_name not in model_cache: | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, # Use float16 for efficiency | |
| device_map="auto" # Auto-detect GPU | |
| ) | |
| model_cache[model_name] = { | |
| 'name': model_name, | |
| 'tokenizer': tokenizer, | |
| 'model': model | |
| } | |
| except Exception as e: | |
| raise ValueError(f"Failed to load model {model_name}: {str(e)}") | |
| return model_cache[model_name] | |
| def chat_with_model(model_data, conversation, streaming=False): | |
| """Generate response using the loaded model.""" | |
| try: | |
| tokenizer = model_data['tokenizer'] | |
| model = model_data['model'] | |
| inputs = tokenizer(conversation, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=inputs['input_ids'].shape[1] + 100, # Generate up to 100 new tokens | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) | |
| return response.strip() | |
| except Exception as e: | |
| return f"Error generating response: {str(e)}" |