Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.models.attention_processor import Attention | |
| from .fuser import xFuserLongContextAttention | |
| def _get_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None): | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| encoder_query = encoder_key = encoder_value = None | |
| if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None: | |
| encoder_query = attn.add_q_proj(encoder_hidden_states) | |
| encoder_key = attn.add_k_proj(encoder_hidden_states) | |
| encoder_value = attn.add_v_proj(encoder_hidden_states) | |
| return query, key, value, encoder_query, encoder_key, encoder_value | |
| def _get_qkv_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None): | |
| return _get_projections(attn, hidden_states, encoder_hidden_states) | |
| def apply_rotary_emb( | |
| x: torch.Tensor, | |
| freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
| use_real: bool = True, | |
| use_real_unbind_dim: int = -1, | |
| sequence_dim: int = 2, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
| to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
| reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
| tensors contain rotary embeddings and are returned as real tensors. | |
| Args: | |
| x (`torch.Tensor`): | |
| Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
| freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
| """ | |
| if use_real: | |
| cos, sin = freqs_cis # [S, D] | |
| if sequence_dim == 2: | |
| cos = cos[None, None, :, :] | |
| sin = sin[None, None, :, :] | |
| elif sequence_dim == 1: | |
| cos = cos[None, :, None, :] | |
| sin = sin[None, :, None, :] | |
| else: | |
| raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.") | |
| cos, sin = cos.to(x.device), sin.to(x.device) | |
| if use_real_unbind_dim == -1: | |
| # Used for flux, cogvideox, hunyuan-dit | |
| x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, H, S, D//2] | |
| x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
| elif use_real_unbind_dim == -2: | |
| # Used for Stable Audio, OmniGen, CogView4 and Cosmos | |
| x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, H, S, D//2] | |
| x_rotated = torch.cat([-x_imag, x_real], dim=-1) | |
| else: | |
| raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") | |
| out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
| return out | |
| else: | |
| # used for lumina | |
| x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
| freqs_cis = freqs_cis.unsqueeze(2) | |
| x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | |
| return x_out.type_as(x) | |
| class FluxMultiGPUsAttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on | |
| query and key vectors, but does not include spatial normalization. | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("FluxMultiGPUsAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn: "FluxAttention", | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| text_seq_len: int = None, | |
| ) -> torch.FloatTensor: | |
| query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections( | |
| attn, hidden_states, encoder_hidden_states | |
| ) | |
| query = query.unflatten(-1, (attn.heads, -1)) | |
| key = key.unflatten(-1, (attn.heads, -1)) | |
| value = value.unflatten(-1, (attn.heads, -1)) | |
| query = attn.norm_q(query) | |
| key = attn.norm_k(key) | |
| if attn.added_kv_proj_dim is not None: | |
| encoder_query = encoder_query.unflatten(-1, (attn.heads, -1)) | |
| encoder_key = encoder_key.unflatten(-1, (attn.heads, -1)) | |
| encoder_value = encoder_value.unflatten(-1, (attn.heads, -1)) | |
| encoder_query = attn.norm_added_q(encoder_query) | |
| encoder_key = attn.norm_added_k(encoder_key) | |
| query = torch.cat([encoder_query, query], dim=1) | |
| key = torch.cat([encoder_key, key], dim=1) | |
| value = torch.cat([encoder_value, value], dim=1) | |
| # Apply rotary embeddings | |
| if image_rotary_emb is not None: | |
| query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1) | |
| key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1) | |
| if attn.added_kv_proj_dim is not None and text_seq_len is None: | |
| text_seq_len = encoder_query.shape[1] | |
| txt_query, txt_key, txt_value = query[:, :text_seq_len], key[:, :text_seq_len], value[:, :text_seq_len] | |
| img_query, img_key, img_value = query[:, text_seq_len:], key[:, text_seq_len:], value[:, text_seq_len:] | |
| half_dtypes = (torch.float16, torch.bfloat16) | |
| def half(x): | |
| return x if x.dtype in half_dtypes else x.to(torch.bfloat16) | |
| hidden_states = xFuserLongContextAttention()( | |
| None, | |
| half(img_query), half(img_key), half(img_value), dropout_p=0.0, causal=False, | |
| joint_tensor_query=half(txt_query) if txt_query is not None else None, | |
| joint_tensor_key=half(txt_key) if txt_key is not None else None, | |
| joint_tensor_value=half(txt_value) if txt_value is not None else None, | |
| joint_strategy='front', | |
| ) | |
| # Reshape back | |
| hidden_states = hidden_states.flatten(2, 3) | |
| hidden_states = hidden_states.to(img_query.dtype) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states, hidden_states = hidden_states.split_with_sizes( | |
| [encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1 | |
| ) | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| return hidden_states, encoder_hidden_states | |
| else: | |
| return hidden_states |