ZIT-Controlnet / videox_fun /models /flux2_transformer2d.py
Alexander Bagus
22
be751d2
# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_flux2.py
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import inspect
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (TimestepEmbedding, Timesteps,
apply_rotary_emb,
get_1d_rotary_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_npu_available,
is_torch_version, logging, scale_lora_layers,
unscale_lora_layers)
from ..dist import (Flux2MultiGPUsAttnProcessor2_0, get_sequence_parallel_rank,
get_sequence_parallel_world_size, get_sp_group)
from .attention_utils import attention
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _get_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None):
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
encoder_query = encoder_key = encoder_value = None
if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
return query, key, value, encoder_query, encoder_key, encoder_value
def _get_qkv_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None):
return _get_projections(attn, hidden_states, encoder_hidden_states)
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
sequence_dim: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
if sequence_dim == 2:
cos = cos[None, None, :, :]
sin = sin[None, None, :, :]
elif sequence_dim == 1:
cos = cos[None, :, None, :]
sin = sin[None, :, None, :]
else:
raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.")
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, H, S, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, H, S, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
# used for lumina
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class Flux2SwiGLU(nn.Module):
"""
Flux 2 uses a SwiGLU-style activation in the transformer feedforward sub-blocks, but with the linear projection
layer fused into the first linear layer of the FF sub-block. Thus, this module has no trainable parameters.
"""
def __init__(self):
super().__init__()
self.gate_fn = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
x = self.gate_fn(x1) * x2
return x
class Flux2FeedForward(nn.Module):
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: float = 3.0,
inner_dim: Optional[int] = None,
bias: bool = False,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out or dim
# Flux2SwiGLU will reduce the dimension by half
self.linear_in = nn.Linear(dim, inner_dim * 2, bias=bias)
self.act_fn = Flux2SwiGLU()
self.linear_out = nn.Linear(inner_dim, dim_out, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_in(x)
x = self.act_fn(x)
x = self.linear_out(x)
return x
class Flux2AttnProcessor:
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.")
def __call__(
self,
attn: Union["Flux2Attention", "Flux2ParallelSelfAttention"],
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
text_seq_len: int = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Unified processor for both Flux2Attention and Flux2ParallelSelfAttention.
Args:
attn: Attention module (either Flux2Attention or Flux2ParallelSelfAttention)
hidden_states: Input hidden states
encoder_hidden_states: Optional encoder hidden states (only for Flux2Attention)
attention_mask: Optional attention mask
image_rotary_emb: Optional rotary embeddings
Returns:
For Flux2Attention with encoder_hidden_states: (hidden_states, encoder_hidden_states)
For Flux2Attention without encoder_hidden_states: hidden_states
For Flux2ParallelSelfAttention: hidden_states
"""
# Determine which type of attention we're processing
is_parallel_self_attn = hasattr(attn, 'to_qkv_mlp_proj') and attn.to_qkv_mlp_proj is not None
if is_parallel_self_attn:
# ============================================
# Parallel Self-Attention Path (with MLP)
# ============================================
# Parallel in (QKV + MLP in) projection
hidden_states = attn.to_qkv_mlp_proj(hidden_states)
qkv, mlp_hidden_states = torch.split(
hidden_states, [3 * attn.inner_dim, attn.mlp_hidden_dim * attn.mlp_mult_factor], dim=-1
)
# Handle the attention logic
query, key, value = qkv.chunk(3, dim=-1)
else:
# ============================================
# Standard Attention Path (possibly with encoder)
# ============================================
query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
attn, hidden_states, encoder_hidden_states
)
# Common processing for query, key, value
query = query.unflatten(-1, (attn.heads, -1))
key = key.unflatten(-1, (attn.heads, -1))
value = value.unflatten(-1, (attn.heads, -1))
query = attn.norm_q(query)
key = attn.norm_k(key)
# Handle encoder projections (only for standard attention)
if not is_parallel_self_attn and attn.added_kv_proj_dim is not None:
encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))
encoder_query = attn.norm_added_q(encoder_query)
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([encoder_query, query], dim=1)
key = torch.cat([encoder_key, key], dim=1)
value = torch.cat([encoder_value, value], dim=1)
# Apply rotary embeddings
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
# Perform attention
hidden_states = attention(
query, key, value, attn_mask=attention_mask,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
if is_parallel_self_attn:
# ============================================
# Parallel Self-Attention Output Path
# ============================================
# Handle the feedforward (FF) logic
mlp_hidden_states = attn.mlp_act_fn(mlp_hidden_states)
# Concatenate and parallel output projection
hidden_states = torch.cat([hidden_states, mlp_hidden_states], dim=-1)
hidden_states = attn.to_out(hidden_states)
return hidden_states
else:
# ============================================
# Standard Attention Output Path
# ============================================
# Split encoder and latent hidden states if encoder was used
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
# Project output
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None:
return hidden_states, encoder_hidden_states
else:
return hidden_states
class Flux2Attention(torch.nn.Module):
_default_processor_cls = Flux2AttnProcessor
_available_processors = [Flux2AttnProcessor]
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
elementwise_affine: bool = True,
processor=None,
):
super().__init__()
self.head_dim = dim_head
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.out_dim = out_dim if out_dim is not None else query_dim
self.heads = out_dim // dim_head if out_dim is not None else heads
self.use_bias = bias
self.dropout = dropout
self.added_kv_proj_dim = added_kv_proj_dim
self.added_proj_bias = added_proj_bias
self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
# QK Norm
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.to_out = torch.nn.ModuleList([])
self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(torch.nn.Dropout(dropout))
if added_kv_proj_dim is not None:
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias)
if processor is None:
processor = self._default_processor_cls()
self.set_processor(processor)
def set_processor(self, processor: AttentionProcessor) -> None:
"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
logger.warning(
f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
class Flux2ParallelSelfAttention(torch.nn.Module):
"""
Flux 2 parallel self-attention for the Flux 2 single-stream transformer blocks.
This implements a parallel transformer block, where the attention QKV projections are fused to the feedforward (FF)
input projections, and the attention output projections are fused to the FF output projections. See the [ViT-22B
paper](https://arxiv.org/abs/2302.05442) for a visual depiction of this type of transformer block.
"""
_default_processor_cls = Flux2AttnProcessor
_available_processors = [Flux2AttnProcessor]
# Does not support QKV fusion as the QKV projections are always fused
_supports_qkv_fusion = False
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
elementwise_affine: bool = True,
mlp_ratio: float = 4.0,
mlp_mult_factor: int = 2,
processor=None,
):
super().__init__()
self.head_dim = dim_head
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.out_dim = out_dim if out_dim is not None else query_dim
self.heads = out_dim // dim_head if out_dim is not None else heads
self.use_bias = bias
self.dropout = dropout
self.mlp_ratio = mlp_ratio
self.mlp_hidden_dim = int(query_dim * self.mlp_ratio)
self.mlp_mult_factor = mlp_mult_factor
# Fused QKV projections + MLP input projection
self.to_qkv_mlp_proj = torch.nn.Linear(
self.query_dim, self.inner_dim * 3 + self.mlp_hidden_dim * self.mlp_mult_factor, bias=bias
)
self.mlp_act_fn = Flux2SwiGLU()
# QK Norm
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
# Fused attention output projection + MLP output projection
self.to_out = torch.nn.Linear(self.inner_dim + self.mlp_hidden_dim, self.out_dim, bias=out_bias)
if processor is None:
processor = self._default_processor_cls()
self.set_processor(processor)
def set_processor(self, processor: AttentionProcessor) -> None:
"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
logger.warning(
f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
class Flux2SingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 3.0,
eps: float = 1e-6,
bias: bool = False,
):
super().__init__()
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
# Note that the MLP in/out linear layers are fused with the attention QKV/out projections, respectively; this
# is often called a "parallel" transformer block. See the [ViT-22B paper](https://arxiv.org/abs/2302.05442)
# for a visual depiction of this type of transformer block.
self.attn = Flux2ParallelSelfAttention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=bias,
out_bias=bias,
eps=eps,
mlp_ratio=mlp_ratio,
mlp_mult_factor=2,
processor=Flux2AttnProcessor(),
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor],
temb_mod_params: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# If encoder_hidden_states is None, hidden_states is assumed to have encoder_hidden_states already
# concatenated
if encoder_hidden_states is not None:
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
mod_shift, mod_scale, mod_gate = temb_mod_params
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift
joint_attention_kwargs = joint_attention_kwargs or {}
attn_output = self.attn(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
text_seq_len=text_seq_len,
**joint_attention_kwargs,
)
hidden_states = hidden_states + mod_gate * attn_output
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:]
return encoder_hidden_states, hidden_states
class Flux2TransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 3.0,
eps: float = 1e-6,
bias: bool = False,
):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.norm1_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.attn = Flux2Attention(
query_dim=dim,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=bias,
added_proj_bias=bias,
out_bias=bias,
eps=eps,
processor=Flux2AttnProcessor(),
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.ff = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias)
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.ff_context = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb_mod_params_img: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_params_txt: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
joint_attention_kwargs = joint_attention_kwargs or {}
# Modulation parameters shape: [1, 1, self.dim]
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt
# Img stream
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = (1 + scale_msa) * norm_hidden_states + shift_msa
# Conditioning txt stream
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
norm_encoder_hidden_states = (1 + c_scale_msa) * norm_encoder_hidden_states + c_shift_msa
# Attention on concatenated img + txt stream
attention_outputs = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
attn_output, context_attn_output = attention_outputs
# Process attention outputs for the image stream (`hidden_states`).
attn_output = gate_msa * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_mlp * ff_output
# Process attention outputs for the text stream (`encoder_hidden_states`).
context_attn_output = c_gate_msa * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states
class Flux2PosEmbed(nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
# Expected ids shape: [S, len(self.axes_dim)]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
is_npu = ids.device.type == "npu"
freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64
# Unlike Flux 1, loop over len(self.axes_dim) rather than ids.shape[-1]
for i in range(len(self.axes_dim)):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[..., i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin
class Flux2TimestepGuidanceEmbeddings(nn.Module):
def __init__(self, in_channels: int = 256, embedding_dim: int = 6144, bias: bool = False):
super().__init__()
self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
self.guidance_embedder = TimestepEmbedding(
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor) -> torch.Tensor:
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(timestep.dtype)) # (N, D)
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(guidance.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb
return time_guidance_emb
class Flux2Modulation(nn.Module):
def __init__(self, dim: int, mod_param_sets: int = 2, bias: bool = False):
super().__init__()
self.mod_param_sets = mod_param_sets
self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
self.act_fn = nn.SiLU()
def forward(self, temb: torch.Tensor) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
mod = self.act_fn(temb)
mod = self.linear(mod)
if mod.ndim == 2:
mod = mod.unsqueeze(1)
mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
# Return tuple of 3-tuples of modulation params shift/scale/gate
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))
class Flux2Transformer2DModel(
ModelMixin,
ConfigMixin,
FromOriginalModelMixin,
):
"""
The Transformer model introduced in Flux 2.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Args:
patch_size (`int`, defaults to `1`):
Patch size to turn the input data into small patches.
in_channels (`int`, defaults to `128`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `None`):
The number of channels in the output. If not specified, it defaults to `in_channels`.
num_layers (`int`, defaults to `8`):
The number of layers of dual stream DiT blocks to use.
num_single_layers (`int`, defaults to `48`):
The number of layers of single stream DiT blocks to use.
attention_head_dim (`int`, defaults to `128`):
The number of dimensions to use for each attention head.
num_attention_heads (`int`, defaults to `48`):
The number of attention heads to use.
joint_attention_dim (`int`, defaults to `15360`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
pooled_projection_dim (`int`, defaults to `768`):
The number of dimensions to use for the pooled projection.
guidance_embeds (`bool`, defaults to `True`):
Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(32, 32, 32, 32)`):
The dimensions to use for the rotary positional embeddings.
"""
_supports_gradient_checkpointing = True
# _no_split_modules = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"]
# _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
# _repeated_blocks = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"]
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 128,
out_channels: Optional[int] = None,
num_layers: int = 8,
num_single_layers: int = 48,
attention_head_dim: int = 128,
num_attention_heads: int = 48,
joint_attention_dim: int = 15360,
timestep_guidance_channels: int = 256,
mlp_ratio: float = 3.0,
axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32),
rope_theta: int = 2000,
eps: float = 1e-6,
):
super().__init__()
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
# 1. Sinusoidal positional embedding for RoPE on image and text tokens
self.pos_embed = Flux2PosEmbed(theta=rope_theta, axes_dim=axes_dims_rope)
# 2. Combined timestep + guidance embedding
self.time_guidance_embed = Flux2TimestepGuidanceEmbeddings(
in_channels=timestep_guidance_channels, embedding_dim=self.inner_dim, bias=False
)
# 3. Modulation (double stream and single stream blocks share modulation parameters, resp.)
# Two sets of shift/scale/gate modulation parameters for the double stream attn and FF sub-blocks
self.double_stream_modulation_img = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False)
self.double_stream_modulation_txt = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False)
# Only one set of modulation parameters as the attn and FF sub-blocks are run in parallel for single stream
self.single_stream_modulation = Flux2Modulation(self.inner_dim, mod_param_sets=1, bias=False)
# 4. Input projections
self.x_embedder = nn.Linear(in_channels, self.inner_dim, bias=False)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim, bias=False)
# 5. Double Stream Transformer Blocks
self.transformer_blocks = nn.ModuleList(
[
Flux2TransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
eps=eps,
bias=False,
)
for _ in range(num_layers)
]
)
# 6. Single Stream Transformer Blocks
self.single_transformer_blocks = nn.ModuleList(
[
Flux2SingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
eps=eps,
bias=False,
)
for _ in range(num_single_layers)
]
)
# 7. Output layers
self.norm_out = AdaLayerNormContinuous(
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=eps, bias=False
)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)
self.gradient_checkpointing = False
self.sp_world_size = 1
self.sp_world_rank = 0
def _set_gradient_checkpointing(self, *args, **kwargs):
if "value" in kwargs:
self.gradient_checkpointing = kwargs["value"]
elif "enable" in kwargs:
self.gradient_checkpointing = kwargs["enable"]
else:
raise ValueError("Invalid set gradient checkpointing")
def enable_multi_gpus_inference(self,):
self.sp_world_size = get_sequence_parallel_world_size()
self.sp_world_rank = get_sequence_parallel_rank()
self.all_gather = get_sp_group().all_gather
self.set_attn_processor(Flux2MultiGPUsAttnProcessor2_0())
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 0. Handle input arguments
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
num_txt_tokens = encoder_hidden_states.shape[1]
# 1. Calculate timestep embedding and modulation parameters
timestep = timestep.to(hidden_states.dtype) * 1000
guidance = guidance.to(hidden_states.dtype) * 1000
temb = self.time_guidance_embed(timestep, guidance)
double_stream_mod_img = self.double_stream_modulation_img(temb)
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
single_stream_mod = self.single_stream_modulation(temb)[0]
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
hidden_states = self.x_embedder(hidden_states)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
# 3. Calculate RoPE embeddings from image and text tokens
# NOTE: the below logic means that we can't support batched inference with images of different resolutions or
# text prompts of differents lengths. Is this a use case we want to support?
if img_ids.ndim == 3:
img_ids = img_ids[0]
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if is_torch_npu_available():
freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu())
image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu())
freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu())
text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu())
else:
image_rotary_emb = self.pos_embed(img_ids)
text_rotary_emb = self.pos_embed(txt_ids)
concat_rotary_emb = (
torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0),
torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0),
)
# Context Parallel
if self.sp_world_size > 1:
hidden_states = torch.chunk(hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank]
if concat_rotary_emb is not None:
txt_rotary_emb = (
concat_rotary_emb[0][:encoder_hidden_states.shape[1]],
concat_rotary_emb[1][:encoder_hidden_states.shape[1]]
)
concat_rotary_emb = (
torch.chunk(concat_rotary_emb[0][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
torch.chunk(concat_rotary_emb[1][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
)
concat_rotary_emb = [torch.cat([_txt_rotary_emb, _image_rotary_emb], dim=0) \
for _txt_rotary_emb, _image_rotary_emb in zip(txt_rotary_emb, concat_rotary_emb)]
# 4. Double Stream Transformer Blocks
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
double_stream_mod_img,
double_stream_mod_txt,
concat_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# 5. Single Stream Transformer Blocks
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
single_stream_mod,
concat_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params=single_stream_mod,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# 6. Output layers
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if self.sp_world_size > 1:
output = self.all_gather(output, dim=1)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
@classmethod
def from_pretrained(
cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={},
low_cpu_mem_usage=False, torch_dtype=torch.bfloat16
):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
from diffusers.utils import WEIGHTS_NAME
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if "dict_mapping" in transformer_additional_kwargs.keys():
for key in transformer_additional_kwargs["dict_mapping"]:
transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key]
if low_cpu_mem_usage:
try:
import re
from diffusers import __version__ as diffusers_version
if diffusers_version >= "0.33.0":
from diffusers.models.model_loading_utils import \
load_model_dict_into_meta
else:
from diffusers.models.modeling_utils import \
load_model_dict_into_meta
from diffusers.utils import is_accelerate_available
if is_accelerate_available():
import accelerate
# Instantiate model with empty weights
with accelerate.init_empty_weights():
model = cls.from_config(config, **transformer_additional_kwargs)
param_device = "cpu"
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file, safe_open
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
print(model_files_safetensors)
for _model_file_safetensors in model_files_safetensors:
_state_dict = load_file(_model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
filtered_state_dict = {}
for key in state_dict:
if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size():
filtered_state_dict[key] = state_dict[key]
else:
print(f"Skipping key '{key}' due to size mismatch or absence in model.")
model_keys = set(model.state_dict().keys())
loaded_keys = set(filtered_state_dict.keys())
missing_keys = model_keys - loaded_keys
def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None):
initialized_dict = {}
with torch.no_grad():
for key in missing_keys:
param_shape = model_state_dict[key].shape
param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype
if 'weight' in key:
if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']):
initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
elif 'embedding' in key or 'embed' in key:
initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
elif 'head' in key or 'output' in key or 'proj_out' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
elif len(param_shape) >= 2:
initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype)
nn.init.xavier_uniform_(initialized_dict[key])
else:
initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
elif 'bias' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
elif 'running_mean' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
elif 'running_var' in key:
initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
elif 'num_batches_tracked' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long)
else:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
return initialized_dict
if missing_keys:
print(f"Missing keys will be initialized: {sorted(missing_keys)}")
initialized_params = initialize_missing_parameters(
missing_keys,
model.state_dict(),
torch_dtype
)
filtered_state_dict.update(initialized_params)
if diffusers_version >= "0.33.0":
# Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit:
# https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785.
load_model_dict_into_meta(
model,
filtered_state_dict,
dtype=torch_dtype,
model_name_or_path=pretrained_model_path,
)
else:
model._convert_deprecated_attention_blocks(filtered_state_dict)
unexpected_keys = load_model_dict_into_meta(
model,
filtered_state_dict,
device=param_device,
dtype=torch_dtype,
model_name_or_path=pretrained_model_path,
)
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
print(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
return model
except Exception as e:
print(
f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead."
)
model = cls.from_config(config, **transformer_additional_kwargs)
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file, safe_open
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
for _model_file_safetensors in model_files_safetensors:
_state_dict = load_file(_model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
tmp_state_dict = {}
for key in state_dict:
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
tmp_state_dict[key] = state_dict[key]
else:
print(key, "Size don't match, skip")
state_dict = tmp_state_dict
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
print(m)
params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()]
print(f"### All Parameters: {sum(params) / 1e6} M")
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
model = model.to(torch_dtype)
return model