Update app.py
Browse files
app.py
CHANGED
|
@@ -163,7 +163,7 @@ class TextClassifier:
|
|
| 163 |
}
|
| 164 |
|
| 165 |
def detailed_scan(self, text: str) -> Dict:
|
| 166 |
-
"""
|
| 167 |
if not text.strip():
|
| 168 |
return {
|
| 169 |
'sentence_predictions': [],
|
|
@@ -180,22 +180,21 @@ class TextClassifier:
|
|
| 180 |
if not sentences:
|
| 181 |
return {}
|
| 182 |
|
| 183 |
-
#
|
| 184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 185 |
-
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0, 'appearances': 0} for i in range(len(sentences))}
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
| 190 |
|
| 191 |
-
#
|
| 192 |
-
batch_size =
|
| 193 |
for i in range(0, len(windows), batch_size):
|
| 194 |
batch_end = min(i + batch_size, len(windows))
|
| 195 |
batch_windows = windows[i:batch_end]
|
| 196 |
batch_indices = window_sentence_indices[i:batch_end]
|
| 197 |
|
| 198 |
-
# Process batch
|
| 199 |
inputs = self.tokenizer(
|
| 200 |
batch_windows,
|
| 201 |
truncation=True,
|
|
@@ -208,46 +207,54 @@ class TextClassifier:
|
|
| 208 |
outputs = self.model(**inputs)
|
| 209 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 210 |
|
| 211 |
-
#
|
| 212 |
for window_idx, indices in enumerate(batch_indices):
|
| 213 |
center_idx = len(indices) // 2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
window_human_prob = probs[window_idx][1].item()
|
| 215 |
window_ai_prob = probs[window_idx][0].item()
|
| 216 |
|
| 217 |
-
# Update scores for all sentences in this window
|
| 218 |
for pos, sent_idx in enumerate(indices):
|
|
|
|
| 219 |
weight = center_weight if pos == center_idx else edge_weight
|
|
|
|
| 220 |
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
| 221 |
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
| 222 |
-
sentence_scores[sent_idx]['appearances'] += weight
|
| 223 |
|
|
|
|
| 224 |
del inputs, outputs, probs
|
| 225 |
if torch.cuda.is_available():
|
| 226 |
torch.cuda.empty_cache()
|
| 227 |
|
| 228 |
-
# Calculate final predictions
|
| 229 |
sentence_predictions = []
|
| 230 |
-
prev_pred = None
|
| 231 |
for i in range(len(sentences)):
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
| 252 |
sentence_predictions.append({
|
| 253 |
'sentence': sentences[i],
|
|
@@ -256,7 +263,6 @@ class TextClassifier:
|
|
| 256 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 257 |
'confidence': max(human_prob, ai_prob)
|
| 258 |
})
|
| 259 |
-
prev_pred = current_pred
|
| 260 |
|
| 261 |
return {
|
| 262 |
'sentence_predictions': sentence_predictions,
|
|
@@ -264,7 +270,6 @@ class TextClassifier:
|
|
| 264 |
'full_text': text,
|
| 265 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 266 |
}
|
| 267 |
-
|
| 268 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 269 |
"""Format predictions as HTML with color-coding."""
|
| 270 |
html_parts = []
|
|
|
|
| 163 |
}
|
| 164 |
|
| 165 |
def detailed_scan(self, text: str) -> Dict:
|
| 166 |
+
"""Perform a detailed scan with sentence-level analysis and improved boundary handling."""
|
| 167 |
if not text.strip():
|
| 168 |
return {
|
| 169 |
'sentence_predictions': [],
|
|
|
|
| 180 |
if not sentences:
|
| 181 |
return {}
|
| 182 |
|
| 183 |
+
# Create centered windows for each sentence
|
| 184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
|
|
|
| 185 |
|
| 186 |
+
# Track scores for each sentence
|
| 187 |
+
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 188 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 189 |
|
| 190 |
+
# Increased batch size and process windows more efficiently
|
| 191 |
+
batch_size = 32 # Increased from 16 to 32
|
| 192 |
for i in range(0, len(windows), batch_size):
|
| 193 |
batch_end = min(i + batch_size, len(windows))
|
| 194 |
batch_windows = windows[i:batch_end]
|
| 195 |
batch_indices = window_sentence_indices[i:batch_end]
|
| 196 |
|
| 197 |
+
# Process batch more efficiently
|
| 198 |
inputs = self.tokenizer(
|
| 199 |
batch_windows,
|
| 200 |
truncation=True,
|
|
|
|
| 207 |
outputs = self.model(**inputs)
|
| 208 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 209 |
|
| 210 |
+
# Attribute predictions with center-weighted approach
|
| 211 |
for window_idx, indices in enumerate(batch_indices):
|
| 212 |
center_idx = len(indices) // 2
|
| 213 |
+
center_weight = 0.7 # Higher weight for center sentence
|
| 214 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 215 |
+
|
| 216 |
+
# Process probabilities once per window
|
| 217 |
window_human_prob = probs[window_idx][1].item()
|
| 218 |
window_ai_prob = probs[window_idx][0].item()
|
| 219 |
|
|
|
|
| 220 |
for pos, sent_idx in enumerate(indices):
|
| 221 |
+
# Apply higher weight to center sentence
|
| 222 |
weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
+
sentence_appearances[sent_idx] += weight
|
| 224 |
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
| 225 |
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
|
|
|
| 226 |
|
| 227 |
+
# Clean up GPU memory more aggressively
|
| 228 |
del inputs, outputs, probs
|
| 229 |
if torch.cuda.is_available():
|
| 230 |
torch.cuda.empty_cache()
|
| 231 |
|
| 232 |
+
# Calculate final predictions with boundary smoothing
|
| 233 |
sentence_predictions = []
|
|
|
|
| 234 |
for i in range(len(sentences)):
|
| 235 |
+
if sentence_appearances[i] > 0:
|
| 236 |
+
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 237 |
+
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 238 |
+
|
| 239 |
+
# Apply minimal smoothing at prediction boundaries
|
| 240 |
+
if i > 0 and i < len(sentences) - 1:
|
| 241 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 242 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 243 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 244 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 245 |
|
| 246 |
+
# Check if we're at a prediction boundary
|
| 247 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 248 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 249 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 250 |
+
|
| 251 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
| 252 |
+
# Small adjustment at boundaries
|
| 253 |
+
smooth_factor = 0.1
|
| 254 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
| 255 |
+
(prev_human + next_human) * smooth_factor / 2)
|
| 256 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 257 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
| 258 |
|
| 259 |
sentence_predictions.append({
|
| 260 |
'sentence': sentences[i],
|
|
|
|
| 263 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 264 |
'confidence': max(human_prob, ai_prob)
|
| 265 |
})
|
|
|
|
| 266 |
|
| 267 |
return {
|
| 268 |
'sentence_predictions': sentence_predictions,
|
|
|
|
| 270 |
'full_text': text,
|
| 271 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 272 |
}
|
|
|
|
| 273 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 274 |
"""Format predictions as HTML with color-coding."""
|
| 275 |
html_parts = []
|