Update app.py
Browse files
app.py
CHANGED
|
@@ -1,53 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torch.nn.functional as F
|
| 5 |
-
import spacy
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
import logging
|
| 8 |
import os
|
| 9 |
-
import gradio as gr
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
import time
|
| 14 |
from datetime import datetime
|
| 15 |
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
class TextWindowProcessor:
|
| 28 |
def __init__(self):
|
|
|
|
| 29 |
try:
|
| 30 |
self.nlp = spacy.load("en_core_web_sm")
|
| 31 |
except OSError:
|
|
|
|
| 32 |
logger.info("Downloading spacy model...")
|
| 33 |
spacy.cli.download("en_core_web_sm")
|
| 34 |
self.nlp = spacy.load("en_core_web_sm")
|
| 35 |
|
|
|
|
| 36 |
if 'sentencizer' not in self.nlp.pipe_names:
|
| 37 |
self.nlp.add_pipe('sentencizer')
|
| 38 |
|
|
|
|
| 39 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
| 40 |
self.nlp.disable_pipes(*disabled_pipes)
|
| 41 |
|
|
|
|
| 42 |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 43 |
|
|
|
|
| 44 |
def split_into_sentences(self, text: str) -> List[str]:
|
| 45 |
doc = self.nlp(text)
|
| 46 |
return [str(sent).strip() for sent in doc.sents]
|
| 47 |
|
|
|
|
| 48 |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
|
| 49 |
if len(sentences) < window_size:
|
| 50 |
-
return [" ".join(sentences)]
|
| 51 |
|
| 52 |
windows = []
|
| 53 |
stride = window_size - overlap
|
|
@@ -56,6 +70,8 @@ class TextWindowProcessor:
|
|
| 56 |
windows.append(" ".join(window))
|
| 57 |
return windows
|
| 58 |
|
|
|
|
|
|
|
| 59 |
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
|
| 60 |
windows = []
|
| 61 |
window_sentence_indices = []
|
|
@@ -71,12 +87,16 @@ class TextWindowProcessor:
|
|
| 71 |
|
| 72 |
return windows, window_sentence_indices
|
| 73 |
|
|
|
|
|
|
|
| 74 |
class TextClassifier:
|
| 75 |
def __init__(self):
|
|
|
|
| 76 |
if not torch.cuda.is_available():
|
| 77 |
torch.set_num_threads(MAX_WORKERS)
|
| 78 |
torch.set_num_interop_threads(MAX_WORKERS)
|
| 79 |
|
|
|
|
| 80 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 81 |
self.model_name = MODEL_NAME
|
| 82 |
self.tokenizer = None
|
|
@@ -84,22 +104,26 @@ class TextClassifier:
|
|
| 84 |
self.processor = TextWindowProcessor()
|
| 85 |
self.initialize_model()
|
| 86 |
|
|
|
|
| 87 |
def initialize_model(self):
|
| 88 |
logger.info("Initializing model and tokenizer...")
|
| 89 |
|
|
|
|
| 90 |
from transformers import DebertaV2TokenizerFast
|
| 91 |
|
| 92 |
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
|
| 93 |
self.model_name,
|
| 94 |
model_max_length=MAX_LENGTH,
|
| 95 |
-
use_fast=True
|
| 96 |
)
|
| 97 |
|
|
|
|
| 98 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 99 |
self.model_name,
|
| 100 |
num_labels=2
|
| 101 |
).to(self.device)
|
| 102 |
|
|
|
|
| 103 |
model_path = "model_20250209_184929_acc1.0000.pt"
|
| 104 |
if os.path.exists(model_path):
|
| 105 |
logger.info(f"Loading custom model from {model_path}")
|
|
@@ -108,8 +132,11 @@ class TextClassifier:
|
|
| 108 |
else:
|
| 109 |
logger.warning("Custom model file not found. Using base model.")
|
| 110 |
|
|
|
|
| 111 |
self.model.eval()
|
| 112 |
|
|
|
|
|
|
|
| 113 |
def quick_scan(self, text: str) -> Dict:
|
| 114 |
if not text.strip():
|
| 115 |
return {
|
|
@@ -118,14 +145,17 @@ class TextClassifier:
|
|
| 118 |
'num_windows': 0
|
| 119 |
}
|
| 120 |
|
|
|
|
| 121 |
sentences = self.processor.split_into_sentences(text)
|
| 122 |
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
|
| 123 |
|
| 124 |
predictions = []
|
| 125 |
|
|
|
|
| 126 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 127 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 128 |
|
|
|
|
| 129 |
inputs = self.tokenizer(
|
| 130 |
batch_windows,
|
| 131 |
truncation=True,
|
|
@@ -134,10 +164,12 @@ class TextClassifier:
|
|
| 134 |
return_tensors="pt"
|
| 135 |
).to(self.device)
|
| 136 |
|
|
|
|
| 137 |
with torch.no_grad():
|
| 138 |
outputs = self.model(**inputs)
|
| 139 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 140 |
|
|
|
|
| 141 |
for idx, window in enumerate(batch_windows):
|
| 142 |
prediction = {
|
| 143 |
'window': window,
|
|
@@ -147,6 +179,7 @@ class TextClassifier:
|
|
| 147 |
}
|
| 148 |
predictions.append(prediction)
|
| 149 |
|
|
|
|
| 150 |
del inputs, outputs, probs
|
| 151 |
if torch.cuda.is_available():
|
| 152 |
torch.cuda.empty_cache()
|
|
@@ -158,6 +191,7 @@ class TextClassifier:
|
|
| 158 |
'num_windows': 0
|
| 159 |
}
|
| 160 |
|
|
|
|
| 161 |
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
|
| 162 |
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
|
| 163 |
|
|
@@ -167,6 +201,8 @@ class TextClassifier:
|
|
| 167 |
'num_windows': len(predictions)
|
| 168 |
}
|
| 169 |
|
|
|
|
|
|
|
| 170 |
def detailed_scan(self, text: str) -> Dict:
|
| 171 |
text = text.rstrip()
|
| 172 |
|
|
@@ -182,19 +218,24 @@ class TextClassifier:
|
|
| 182 |
}
|
| 183 |
}
|
| 184 |
|
|
|
|
| 185 |
sentences = self.processor.split_into_sentences(text)
|
| 186 |
if not sentences:
|
| 187 |
return {}
|
| 188 |
|
|
|
|
| 189 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 190 |
|
|
|
|
| 191 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 192 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 193 |
|
|
|
|
| 194 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 195 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 196 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
| 197 |
|
|
|
|
| 198 |
inputs = self.tokenizer(
|
| 199 |
batch_windows,
|
| 200 |
truncation=True,
|
|
@@ -203,31 +244,37 @@ class TextClassifier:
|
|
| 203 |
return_tensors="pt"
|
| 204 |
).to(self.device)
|
| 205 |
|
|
|
|
| 206 |
with torch.no_grad():
|
| 207 |
outputs = self.model(**inputs)
|
| 208 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 209 |
|
|
|
|
| 210 |
for window_idx, indices in enumerate(batch_indices):
|
| 211 |
center_idx = len(indices) // 2
|
| 212 |
-
center_weight = 0.7
|
| 213 |
-
edge_weight = 0.3 / (len(indices) - 1)
|
| 214 |
|
|
|
|
| 215 |
for pos, sent_idx in enumerate(indices):
|
| 216 |
weight = center_weight if pos == center_idx else edge_weight
|
| 217 |
sentence_appearances[sent_idx] += weight
|
| 218 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 219 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 220 |
|
|
|
|
| 221 |
del inputs, outputs, probs
|
| 222 |
if torch.cuda.is_available():
|
| 223 |
torch.cuda.empty_cache()
|
| 224 |
|
|
|
|
| 225 |
sentence_predictions = []
|
| 226 |
for i in range(len(sentences)):
|
| 227 |
if sentence_appearances[i] > 0:
|
| 228 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 229 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 230 |
|
|
|
|
| 231 |
if i > 0 and i < len(sentences) - 1:
|
| 232 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 233 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
|
@@ -238,8 +285,9 @@ class TextClassifier:
|
|
| 238 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 239 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 240 |
|
|
|
|
| 241 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 242 |
-
smooth_factor = 0.1
|
| 243 |
human_prob = (human_prob * (1 - smooth_factor) +
|
| 244 |
(prev_human + next_human) * smooth_factor / 2)
|
| 245 |
ai_prob = (ai_prob * (1 - smooth_factor) +
|
|
@@ -253,6 +301,7 @@ class TextClassifier:
|
|
| 253 |
'confidence': max(human_prob, ai_prob)
|
| 254 |
})
|
| 255 |
|
|
|
|
| 256 |
return {
|
| 257 |
'sentence_predictions': sentence_predictions,
|
| 258 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
|
@@ -260,6 +309,7 @@ class TextClassifier:
|
|
| 260 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 261 |
}
|
| 262 |
|
|
|
|
| 263 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 264 |
html_parts = []
|
| 265 |
|
|
@@ -267,21 +317,23 @@ class TextClassifier:
|
|
| 267 |
sentence = pred['sentence']
|
| 268 |
confidence = pred['confidence']
|
| 269 |
|
|
|
|
| 270 |
if confidence >= CONFIDENCE_THRESHOLD:
|
| 271 |
if pred['prediction'] == 'human':
|
| 272 |
-
color = "#90EE90"
|
| 273 |
else:
|
| 274 |
-
color = "#FFB6C6"
|
| 275 |
else:
|
| 276 |
if pred['prediction'] == 'human':
|
| 277 |
-
color = "#E8F5E9"
|
| 278 |
else:
|
| 279 |
-
color = "#FFEBEE"
|
| 280 |
|
| 281 |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
| 282 |
|
| 283 |
return " ".join(html_parts)
|
| 284 |
|
|
|
|
| 285 |
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
|
| 286 |
if not predictions:
|
| 287 |
return {
|
|
@@ -290,6 +342,7 @@ class TextClassifier:
|
|
| 290 |
'num_sentences': 0
|
| 291 |
}
|
| 292 |
|
|
|
|
| 293 |
total_human_prob = sum(p['human_prob'] for p in predictions)
|
| 294 |
total_ai_prob = sum(p['ai_prob'] for p in predictions)
|
| 295 |
num_sentences = len(predictions)
|
|
@@ -303,16 +356,20 @@ class TextClassifier:
|
|
| 303 |
'num_sentences': num_sentences
|
| 304 |
}
|
| 305 |
|
|
|
|
|
|
|
| 306 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 307 |
start_time = time.time()
|
| 308 |
|
| 309 |
word_count = len(text.split())
|
| 310 |
|
|
|
|
| 311 |
original_mode = mode
|
| 312 |
if word_count < 200 and mode == "detailed":
|
| 313 |
mode = "quick"
|
| 314 |
|
| 315 |
if mode == "quick":
|
|
|
|
| 316 |
result = classifier.quick_scan(text)
|
| 317 |
|
| 318 |
quick_analysis = f"""
|
|
@@ -321,19 +378,22 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 321 |
Windows analyzed: {result['num_windows']}
|
| 322 |
"""
|
| 323 |
|
|
|
|
| 324 |
if original_mode == "detailed":
|
| 325 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 326 |
|
| 327 |
execution_time = (time.time() - start_time) * 1000
|
| 328 |
|
| 329 |
return (
|
| 330 |
-
text,
|
| 331 |
"Quick scan mode - no sentence-level analysis available",
|
| 332 |
quick_analysis
|
| 333 |
)
|
| 334 |
else:
|
|
|
|
| 335 |
analysis = classifier.detailed_scan(text)
|
| 336 |
|
|
|
|
| 337 |
detailed_analysis = []
|
| 338 |
for pred in analysis['sentence_predictions']:
|
| 339 |
confidence = pred['confidence'] * 100
|
|
@@ -342,6 +402,7 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 342 |
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
| 343 |
detailed_analysis.append("-" * 50)
|
| 344 |
|
|
|
|
| 345 |
final_pred = analysis['overall_prediction']
|
| 346 |
overall_result = f"""
|
| 347 |
FINAL PREDICTION: {final_pred['prediction'].upper()}
|
|
@@ -352,13 +413,15 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 352 |
execution_time = (time.time() - start_time) * 1000
|
| 353 |
|
| 354 |
return (
|
| 355 |
-
analysis['highlighted_text'],
|
| 356 |
-
"\n".join(detailed_analysis),
|
| 357 |
-
overall_result
|
| 358 |
)
|
| 359 |
|
|
|
|
| 360 |
classifier = TextClassifier()
|
| 361 |
|
|
|
|
| 362 |
demo = gr.Interface(
|
| 363 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 364 |
inputs=[
|
|
@@ -375,9 +438,9 @@ demo = gr.Interface(
|
|
| 375 |
)
|
| 376 |
],
|
| 377 |
outputs=[
|
| 378 |
-
gr.HTML(label="Highlighted Analysis"),
|
| 379 |
-
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
|
| 380 |
-
gr.Textbox(label="Overall Result", lines=4)
|
| 381 |
],
|
| 382 |
title="AI Text Detector",
|
| 383 |
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
|
@@ -385,8 +448,10 @@ demo = gr.Interface(
|
|
| 385 |
flagging_mode="never"
|
| 386 |
)
|
| 387 |
|
|
|
|
| 388 |
app = demo.app
|
| 389 |
|
|
|
|
| 390 |
app.add_middleware(
|
| 391 |
CORSMiddleware,
|
| 392 |
allow_origins=["*"],
|
|
@@ -395,10 +460,11 @@ app.add_middleware(
|
|
| 395 |
allow_headers=["*"],
|
| 396 |
)
|
| 397 |
|
|
|
|
| 398 |
if __name__ == "__main__":
|
| 399 |
-
demo.queue()
|
| 400 |
demo.launch(
|
| 401 |
-
server_name="0.0.0.0",
|
| 402 |
-
server_port=7860,
|
| 403 |
-
share=True
|
| 404 |
)
|
|
|
|
| 1 |
+
# AI Text Detector Code Analysis
|
| 2 |
+
|
| 3 |
+
# IMPORTS AND CONFIGURATION
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification # HuggingFace transformers for NLP models
|
| 7 |
import torch.nn.functional as F
|
| 8 |
+
import spacy # Used for sentence splitting
|
| 9 |
from typing import List, Dict, Tuple
|
| 10 |
import logging
|
| 11 |
import os
|
| 12 |
+
import gradio as gr # Used for creating the web UI
|
| 13 |
from fastapi.middleware.cors import CORSMiddleware
|
| 14 |
from concurrent.futures import ThreadPoolExecutor
|
| 15 |
from functools import partial
|
| 16 |
import time
|
| 17 |
from datetime import datetime
|
| 18 |
|
| 19 |
+
# Basic logging setup
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
+
# GLOBAL PARAMETERS
|
| 24 |
+
MAX_LENGTH = 512 # Maximum token length for the model input
|
| 25 |
+
MODEL_NAME = "microsoft/deberta-v3-small" # Using Microsoft's DeBERTa v3 small model as the base
|
| 26 |
+
WINDOW_SIZE = 6 # Number of sentences in each analysis window
|
| 27 |
+
WINDOW_OVERLAP = 2 # Number of sentences that overlap between adjacent windows
|
| 28 |
+
CONFIDENCE_THRESHOLD = 0.65 # Threshold for highlighting predictions with stronger colors
|
| 29 |
+
BATCH_SIZE = 8 # Number of windows to process in a single batch for efficiency
|
| 30 |
+
MAX_WORKERS = 4 # Maximum number of worker threads for parallel processing
|
| 31 |
+
|
| 32 |
+
# TEXT WINDOW PROCESSOR
|
| 33 |
+
# This class handles sentence splitting and window creation for text analysis
|
| 34 |
class TextWindowProcessor:
|
| 35 |
def __init__(self):
|
| 36 |
+
# Initialize SpaCy with minimal pipeline for sentence splitting
|
| 37 |
try:
|
| 38 |
self.nlp = spacy.load("en_core_web_sm")
|
| 39 |
except OSError:
|
| 40 |
+
# Auto-download SpaCy model if not available
|
| 41 |
logger.info("Downloading spacy model...")
|
| 42 |
spacy.cli.download("en_core_web_sm")
|
| 43 |
self.nlp = spacy.load("en_core_web_sm")
|
| 44 |
|
| 45 |
+
# Add sentencizer if not already present
|
| 46 |
if 'sentencizer' not in self.nlp.pipe_names:
|
| 47 |
self.nlp.add_pipe('sentencizer')
|
| 48 |
|
| 49 |
+
# Disable unnecessary components for better performance
|
| 50 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
| 51 |
self.nlp.disable_pipes(*disabled_pipes)
|
| 52 |
|
| 53 |
+
# Setup ThreadPoolExecutor for parallel processing
|
| 54 |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 55 |
|
| 56 |
+
# Split text into individual sentences using SpaCy
|
| 57 |
def split_into_sentences(self, text: str) -> List[str]:
|
| 58 |
doc = self.nlp(text)
|
| 59 |
return [str(sent).strip() for sent in doc.sents]
|
| 60 |
|
| 61 |
+
# Create overlapping windows of fixed size (for quick scan)
|
| 62 |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
|
| 63 |
if len(sentences) < window_size:
|
| 64 |
+
return [" ".join(sentences)] # Return single window if not enough sentences
|
| 65 |
|
| 66 |
windows = []
|
| 67 |
stride = window_size - overlap
|
|
|
|
| 70 |
windows.append(" ".join(window))
|
| 71 |
return windows
|
| 72 |
|
| 73 |
+
# Create windows centered around each sentence (for detailed scan)
|
| 74 |
+
# This provides better analysis of individual sentences with proper context
|
| 75 |
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
|
| 76 |
windows = []
|
| 77 |
window_sentence_indices = []
|
|
|
|
| 87 |
|
| 88 |
return windows, window_sentence_indices
|
| 89 |
|
| 90 |
+
# TEXT CLASSIFIER
|
| 91 |
+
# This class handles the actual AI/Human classification using a pre-trained model
|
| 92 |
class TextClassifier:
|
| 93 |
def __init__(self):
|
| 94 |
+
# Configure CPU threading if CUDA not available
|
| 95 |
if not torch.cuda.is_available():
|
| 96 |
torch.set_num_threads(MAX_WORKERS)
|
| 97 |
torch.set_num_interop_threads(MAX_WORKERS)
|
| 98 |
|
| 99 |
+
# Set device (GPU if available, otherwise CPU)
|
| 100 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 101 |
self.model_name = MODEL_NAME
|
| 102 |
self.tokenizer = None
|
|
|
|
| 104 |
self.processor = TextWindowProcessor()
|
| 105 |
self.initialize_model()
|
| 106 |
|
| 107 |
+
# Initialize the model and tokenizer
|
| 108 |
def initialize_model(self):
|
| 109 |
logger.info("Initializing model and tokenizer...")
|
| 110 |
|
| 111 |
+
# Using DeBERTa tokenizer specifically for better compatibility
|
| 112 |
from transformers import DebertaV2TokenizerFast
|
| 113 |
|
| 114 |
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
|
| 115 |
self.model_name,
|
| 116 |
model_max_length=MAX_LENGTH,
|
| 117 |
+
use_fast=True # Use fast tokenizer for better performance
|
| 118 |
)
|
| 119 |
|
| 120 |
+
# Load classification model with 2 labels (AI and Human)
|
| 121 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 122 |
self.model_name,
|
| 123 |
num_labels=2
|
| 124 |
).to(self.device)
|
| 125 |
|
| 126 |
+
# Try to load custom fine-tuned model weights if available
|
| 127 |
model_path = "model_20250209_184929_acc1.0000.pt"
|
| 128 |
if os.path.exists(model_path):
|
| 129 |
logger.info(f"Loading custom model from {model_path}")
|
|
|
|
| 132 |
else:
|
| 133 |
logger.warning("Custom model file not found. Using base model.")
|
| 134 |
|
| 135 |
+
# Set model to evaluation mode
|
| 136 |
self.model.eval()
|
| 137 |
|
| 138 |
+
# Quick scan analysis - faster but less detailed
|
| 139 |
+
# Uses fixed-size windows with overlap
|
| 140 |
def quick_scan(self, text: str) -> Dict:
|
| 141 |
if not text.strip():
|
| 142 |
return {
|
|
|
|
| 145 |
'num_windows': 0
|
| 146 |
}
|
| 147 |
|
| 148 |
+
# Split text into sentences and then into windows
|
| 149 |
sentences = self.processor.split_into_sentences(text)
|
| 150 |
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
|
| 151 |
|
| 152 |
predictions = []
|
| 153 |
|
| 154 |
+
# Process windows in batches for efficiency
|
| 155 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 156 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 157 |
|
| 158 |
+
# Tokenize and prepare input for the model
|
| 159 |
inputs = self.tokenizer(
|
| 160 |
batch_windows,
|
| 161 |
truncation=True,
|
|
|
|
| 164 |
return_tensors="pt"
|
| 165 |
).to(self.device)
|
| 166 |
|
| 167 |
+
# Run inference with no gradient calculation
|
| 168 |
with torch.no_grad():
|
| 169 |
outputs = self.model(**inputs)
|
| 170 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 171 |
|
| 172 |
+
# Process predictions for each window
|
| 173 |
for idx, window in enumerate(batch_windows):
|
| 174 |
prediction = {
|
| 175 |
'window': window,
|
|
|
|
| 179 |
}
|
| 180 |
predictions.append(prediction)
|
| 181 |
|
| 182 |
+
# Clean up to free memory
|
| 183 |
del inputs, outputs, probs
|
| 184 |
if torch.cuda.is_available():
|
| 185 |
torch.cuda.empty_cache()
|
|
|
|
| 191 |
'num_windows': 0
|
| 192 |
}
|
| 193 |
|
| 194 |
+
# Average probabilities across all windows for final prediction
|
| 195 |
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
|
| 196 |
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
|
| 197 |
|
|
|
|
| 201 |
'num_windows': len(predictions)
|
| 202 |
}
|
| 203 |
|
| 204 |
+
# Detailed scan analysis - slower but provides sentence-level insights
|
| 205 |
+
# Uses windows centered around each sentence for more precise analysis
|
| 206 |
def detailed_scan(self, text: str) -> Dict:
|
| 207 |
text = text.rstrip()
|
| 208 |
|
|
|
|
| 218 |
}
|
| 219 |
}
|
| 220 |
|
| 221 |
+
# Split text into sentences
|
| 222 |
sentences = self.processor.split_into_sentences(text)
|
| 223 |
if not sentences:
|
| 224 |
return {}
|
| 225 |
|
| 226 |
+
# Create a window centered on each sentence
|
| 227 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 228 |
|
| 229 |
+
# Track appearances and scores for each sentence
|
| 230 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 231 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 232 |
|
| 233 |
+
# Process windows in batches
|
| 234 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 235 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 236 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
| 237 |
|
| 238 |
+
# Tokenize and prepare input
|
| 239 |
inputs = self.tokenizer(
|
| 240 |
batch_windows,
|
| 241 |
truncation=True,
|
|
|
|
| 244 |
return_tensors="pt"
|
| 245 |
).to(self.device)
|
| 246 |
|
| 247 |
+
# Run inference
|
| 248 |
with torch.no_grad():
|
| 249 |
outputs = self.model(**inputs)
|
| 250 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 251 |
|
| 252 |
+
# Process each window's predictions
|
| 253 |
for window_idx, indices in enumerate(batch_indices):
|
| 254 |
center_idx = len(indices) // 2
|
| 255 |
+
center_weight = 0.7 # Center sentence gets 70% weight
|
| 256 |
+
edge_weight = 0.3 / (len(indices) - 1) # Other sentences share 30%
|
| 257 |
|
| 258 |
+
# Apply weighted prediction to each sentence in window
|
| 259 |
for pos, sent_idx in enumerate(indices):
|
| 260 |
weight = center_weight if pos == center_idx else edge_weight
|
| 261 |
sentence_appearances[sent_idx] += weight
|
| 262 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 263 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 264 |
|
| 265 |
+
# Clean up memory
|
| 266 |
del inputs, outputs, probs
|
| 267 |
if torch.cuda.is_available():
|
| 268 |
torch.cuda.empty_cache()
|
| 269 |
|
| 270 |
+
# Calculate final predictions for each sentence with smoothing between adjacent sentences
|
| 271 |
sentence_predictions = []
|
| 272 |
for i in range(len(sentences)):
|
| 273 |
if sentence_appearances[i] > 0:
|
| 274 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 275 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 276 |
|
| 277 |
+
# Apply smoothing for sentences not at boundaries
|
| 278 |
if i > 0 and i < len(sentences) - 1:
|
| 279 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 280 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
|
|
|
| 285 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 286 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 287 |
|
| 288 |
+
# Only smooth if current sentence prediction differs from neighbors
|
| 289 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 290 |
+
smooth_factor = 0.1 # 10% smoothing factor
|
| 291 |
human_prob = (human_prob * (1 - smooth_factor) +
|
| 292 |
(prev_human + next_human) * smooth_factor / 2)
|
| 293 |
ai_prob = (ai_prob * (1 - smooth_factor) +
|
|
|
|
| 301 |
'confidence': max(human_prob, ai_prob)
|
| 302 |
})
|
| 303 |
|
| 304 |
+
# Return detailed results
|
| 305 |
return {
|
| 306 |
'sentence_predictions': sentence_predictions,
|
| 307 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
|
|
|
| 309 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 310 |
}
|
| 311 |
|
| 312 |
+
# Format predictions with color highlighting for visual assessment
|
| 313 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 314 |
html_parts = []
|
| 315 |
|
|
|
|
| 317 |
sentence = pred['sentence']
|
| 318 |
confidence = pred['confidence']
|
| 319 |
|
| 320 |
+
# Color coding: stronger colors for high confidence, lighter for low confidence
|
| 321 |
if confidence >= CONFIDENCE_THRESHOLD:
|
| 322 |
if pred['prediction'] == 'human':
|
| 323 |
+
color = "#90EE90" # Green for human (high confidence)
|
| 324 |
else:
|
| 325 |
+
color = "#FFB6C6" # Pink for AI (high confidence)
|
| 326 |
else:
|
| 327 |
if pred['prediction'] == 'human':
|
| 328 |
+
color = "#E8F5E9" # Light green for human (low confidence)
|
| 329 |
else:
|
| 330 |
+
color = "#FFEBEE" # Light pink for AI (low confidence)
|
| 331 |
|
| 332 |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
| 333 |
|
| 334 |
return " ".join(html_parts)
|
| 335 |
|
| 336 |
+
# Aggregate individual sentence predictions into an overall result
|
| 337 |
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
|
| 338 |
if not predictions:
|
| 339 |
return {
|
|
|
|
| 342 |
'num_sentences': 0
|
| 343 |
}
|
| 344 |
|
| 345 |
+
# Calculate average probabilities across all sentences
|
| 346 |
total_human_prob = sum(p['human_prob'] for p in predictions)
|
| 347 |
total_ai_prob = sum(p['ai_prob'] for p in predictions)
|
| 348 |
num_sentences = len(predictions)
|
|
|
|
| 356 |
'num_sentences': num_sentences
|
| 357 |
}
|
| 358 |
|
| 359 |
+
# MAIN ANALYSIS FUNCTION
|
| 360 |
+
# Brings everything together to analyze text based on selected mode
|
| 361 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 362 |
start_time = time.time()
|
| 363 |
|
| 364 |
word_count = len(text.split())
|
| 365 |
|
| 366 |
+
# Auto-switch to quick mode for short texts
|
| 367 |
original_mode = mode
|
| 368 |
if word_count < 200 and mode == "detailed":
|
| 369 |
mode = "quick"
|
| 370 |
|
| 371 |
if mode == "quick":
|
| 372 |
+
# Perform quick analysis
|
| 373 |
result = classifier.quick_scan(text)
|
| 374 |
|
| 375 |
quick_analysis = f"""
|
|
|
|
| 378 |
Windows analyzed: {result['num_windows']}
|
| 379 |
"""
|
| 380 |
|
| 381 |
+
# Notify if automatically switched from detailed to quick mode
|
| 382 |
if original_mode == "detailed":
|
| 383 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 384 |
|
| 385 |
execution_time = (time.time() - start_time) * 1000
|
| 386 |
|
| 387 |
return (
|
| 388 |
+
text, # Original text (no highlighting)
|
| 389 |
"Quick scan mode - no sentence-level analysis available",
|
| 390 |
quick_analysis
|
| 391 |
)
|
| 392 |
else:
|
| 393 |
+
# Perform detailed analysis
|
| 394 |
analysis = classifier.detailed_scan(text)
|
| 395 |
|
| 396 |
+
# Format sentence-by-sentence analysis text
|
| 397 |
detailed_analysis = []
|
| 398 |
for pred in analysis['sentence_predictions']:
|
| 399 |
confidence = pred['confidence'] * 100
|
|
|
|
| 402 |
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
| 403 |
detailed_analysis.append("-" * 50)
|
| 404 |
|
| 405 |
+
# Format overall result summary
|
| 406 |
final_pred = analysis['overall_prediction']
|
| 407 |
overall_result = f"""
|
| 408 |
FINAL PREDICTION: {final_pred['prediction'].upper()}
|
|
|
|
| 413 |
execution_time = (time.time() - start_time) * 1000
|
| 414 |
|
| 415 |
return (
|
| 416 |
+
analysis['highlighted_text'], # HTML-highlighted text
|
| 417 |
+
"\n".join(detailed_analysis), # Detailed sentence analysis
|
| 418 |
+
overall_result # Overall summary
|
| 419 |
)
|
| 420 |
|
| 421 |
+
# Initialize the classifier
|
| 422 |
classifier = TextClassifier()
|
| 423 |
|
| 424 |
+
# GRADIO USER INTERFACE
|
| 425 |
demo = gr.Interface(
|
| 426 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 427 |
inputs=[
|
|
|
|
| 438 |
)
|
| 439 |
],
|
| 440 |
outputs=[
|
| 441 |
+
gr.HTML(label="Highlighted Analysis"), # Shows color-coded result
|
| 442 |
+
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10), # Detailed breakdown
|
| 443 |
+
gr.Textbox(label="Overall Result", lines=4) # Summary results
|
| 444 |
],
|
| 445 |
title="AI Text Detector",
|
| 446 |
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
|
|
|
| 448 |
flagging_mode="never"
|
| 449 |
)
|
| 450 |
|
| 451 |
+
# FastAPI configuration
|
| 452 |
app = demo.app
|
| 453 |
|
| 454 |
+
# Add CORS middleware to allow cross-origin requests
|
| 455 |
app.add_middleware(
|
| 456 |
CORSMiddleware,
|
| 457 |
allow_origins=["*"],
|
|
|
|
| 460 |
allow_headers=["*"],
|
| 461 |
)
|
| 462 |
|
| 463 |
+
# Start the server when run directly
|
| 464 |
if __name__ == "__main__":
|
| 465 |
+
demo.queue() # Enable request queuing
|
| 466 |
demo.launch(
|
| 467 |
+
server_name="0.0.0.0", # Listen on all interfaces
|
| 468 |
+
server_port=7860, # Default Gradio port
|
| 469 |
+
share=True # Generate public URL
|
| 470 |
)
|