Update app.py
Browse files
app.py
CHANGED
|
@@ -13,18 +13,16 @@ from functools import partial
|
|
| 13 |
import time
|
| 14 |
from datetime import datetime
|
| 15 |
|
| 16 |
-
|
| 17 |
logging.basicConfig(level=logging.INFO)
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
-
|
| 21 |
MAX_LENGTH = 512
|
| 22 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
| 23 |
WINDOW_SIZE = 6
|
| 24 |
WINDOW_OVERLAP = 2
|
| 25 |
CONFIDENCE_THRESHOLD = 0.65
|
| 26 |
-
BATCH_SIZE = 8
|
| 27 |
-
MAX_WORKERS = 4
|
| 28 |
|
| 29 |
class TextWindowProcessor:
|
| 30 |
def __init__(self):
|
|
@@ -41,7 +39,6 @@ class TextWindowProcessor:
|
|
| 41 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
| 42 |
self.nlp.disable_pipes(*disabled_pipes)
|
| 43 |
|
| 44 |
-
|
| 45 |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 46 |
|
| 47 |
def split_into_sentences(self, text: str) -> List[str]:
|
|
@@ -64,12 +61,10 @@ class TextWindowProcessor:
|
|
| 64 |
window_sentence_indices = []
|
| 65 |
|
| 66 |
for i in range(len(sentences)):
|
| 67 |
-
|
| 68 |
half_window = window_size // 2
|
| 69 |
start_idx = max(0, i - half_window)
|
| 70 |
end_idx = min(len(sentences), i + half_window + 1)
|
| 71 |
|
| 72 |
-
|
| 73 |
window = sentences[start_idx:end_idx]
|
| 74 |
windows.append(" ".join(window))
|
| 75 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
|
@@ -78,7 +73,6 @@ class TextWindowProcessor:
|
|
| 78 |
|
| 79 |
class TextClassifier:
|
| 80 |
def __init__(self):
|
| 81 |
-
|
| 82 |
if not torch.cuda.is_available():
|
| 83 |
torch.set_num_threads(MAX_WORKERS)
|
| 84 |
torch.set_num_interop_threads(MAX_WORKERS)
|
|
@@ -91,7 +85,6 @@ class TextClassifier:
|
|
| 91 |
self.initialize_model()
|
| 92 |
|
| 93 |
def initialize_model(self):
|
| 94 |
-
"""Initialize the model and tokenizer."""
|
| 95 |
logger.info("Initializing model and tokenizer...")
|
| 96 |
|
| 97 |
from transformers import DebertaV2TokenizerFast
|
|
@@ -130,7 +123,6 @@ class TextClassifier:
|
|
| 130 |
|
| 131 |
predictions = []
|
| 132 |
|
| 133 |
-
|
| 134 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 135 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 136 |
|
|
@@ -155,7 +147,6 @@ class TextClassifier:
|
|
| 155 |
}
|
| 156 |
predictions.append(prediction)
|
| 157 |
|
| 158 |
-
|
| 159 |
del inputs, outputs, probs
|
| 160 |
if torch.cuda.is_available():
|
| 161 |
torch.cuda.empty_cache()
|
|
@@ -177,7 +168,6 @@ class TextClassifier:
|
|
| 177 |
}
|
| 178 |
|
| 179 |
def detailed_scan(self, text: str) -> Dict:
|
| 180 |
-
|
| 181 |
text = text.rstrip()
|
| 182 |
|
| 183 |
if not text.strip():
|
|
@@ -196,14 +186,11 @@ class TextClassifier:
|
|
| 196 |
if not sentences:
|
| 197 |
return {}
|
| 198 |
|
| 199 |
-
|
| 200 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 201 |
|
| 202 |
-
|
| 203 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 204 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 205 |
|
| 206 |
-
|
| 207 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 208 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 209 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
|
@@ -220,45 +207,38 @@ class TextClassifier:
|
|
| 220 |
outputs = self.model(**inputs)
|
| 221 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 222 |
|
| 223 |
-
|
| 224 |
for window_idx, indices in enumerate(batch_indices):
|
| 225 |
center_idx = len(indices) // 2
|
| 226 |
-
center_weight = 0.7
|
| 227 |
-
edge_weight = 0.3 / (len(indices) - 1)
|
| 228 |
|
| 229 |
for pos, sent_idx in enumerate(indices):
|
| 230 |
-
|
| 231 |
weight = center_weight if pos == center_idx else edge_weight
|
| 232 |
sentence_appearances[sent_idx] += weight
|
| 233 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 234 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 235 |
|
| 236 |
-
|
| 237 |
del inputs, outputs, probs
|
| 238 |
if torch.cuda.is_available():
|
| 239 |
torch.cuda.empty_cache()
|
| 240 |
|
| 241 |
-
|
| 242 |
sentence_predictions = []
|
| 243 |
for i in range(len(sentences)):
|
| 244 |
if sentence_appearances[i] > 0:
|
| 245 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 246 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 247 |
|
| 248 |
-
|
| 249 |
if i > 0 and i < len(sentences) - 1:
|
| 250 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 251 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 252 |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 253 |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 254 |
|
| 255 |
-
|
| 256 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 257 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 258 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 259 |
|
| 260 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 261 |
-
|
| 262 |
smooth_factor = 0.1
|
| 263 |
human_prob = (human_prob * (1 - smooth_factor) +
|
| 264 |
(prev_human + next_human) * smooth_factor / 2)
|
|
@@ -289,14 +269,14 @@ class TextClassifier:
|
|
| 289 |
|
| 290 |
if confidence >= CONFIDENCE_THRESHOLD:
|
| 291 |
if pred['prediction'] == 'human':
|
| 292 |
-
color = "
|
| 293 |
else:
|
| 294 |
-
color = "
|
| 295 |
else:
|
| 296 |
if pred['prediction'] == 'human':
|
| 297 |
-
color = "
|
| 298 |
else:
|
| 299 |
-
color = "
|
| 300 |
|
| 301 |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
| 302 |
|
|
@@ -324,13 +304,10 @@ class TextClassifier:
|
|
| 324 |
}
|
| 325 |
|
| 326 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 327 |
-
|
| 328 |
start_time = time.time()
|
| 329 |
|
| 330 |
-
|
| 331 |
word_count = len(text.split())
|
| 332 |
|
| 333 |
-
|
| 334 |
original_mode = mode
|
| 335 |
if word_count < 200 and mode == "detailed":
|
| 336 |
mode = "quick"
|
|
@@ -344,15 +321,13 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 344 |
Windows analyzed: {result['num_windows']}
|
| 345 |
"""
|
| 346 |
|
| 347 |
-
|
| 348 |
if original_mode == "detailed":
|
| 349 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 350 |
|
| 351 |
-
|
| 352 |
execution_time = (time.time() - start_time) * 1000
|
| 353 |
|
| 354 |
return (
|
| 355 |
-
text,
|
| 356 |
"Quick scan mode - no sentence-level analysis available",
|
| 357 |
quick_analysis
|
| 358 |
)
|
|
@@ -374,7 +349,6 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 374 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 375 |
"""
|
| 376 |
|
| 377 |
-
|
| 378 |
execution_time = (time.time() - start_time) * 1000
|
| 379 |
|
| 380 |
return (
|
|
@@ -383,10 +357,8 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 383 |
overall_result
|
| 384 |
)
|
| 385 |
|
| 386 |
-
|
| 387 |
classifier = TextClassifier()
|
| 388 |
|
| 389 |
-
|
| 390 |
demo = gr.Interface(
|
| 391 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 392 |
inputs=[
|
|
@@ -413,12 +385,11 @@ demo = gr.Interface(
|
|
| 413 |
flagging_mode="never"
|
| 414 |
)
|
| 415 |
|
| 416 |
-
|
| 417 |
app = demo.app
|
| 418 |
|
| 419 |
app.add_middleware(
|
| 420 |
CORSMiddleware,
|
| 421 |
-
allow_origins=["*"],
|
| 422 |
allow_credentials=True,
|
| 423 |
allow_methods=["GET", "POST", "OPTIONS"],
|
| 424 |
allow_headers=["*"],
|
|
|
|
| 13 |
import time
|
| 14 |
from datetime import datetime
|
| 15 |
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
|
|
|
| 19 |
MAX_LENGTH = 512
|
| 20 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
| 21 |
WINDOW_SIZE = 6
|
| 22 |
WINDOW_OVERLAP = 2
|
| 23 |
CONFIDENCE_THRESHOLD = 0.65
|
| 24 |
+
BATCH_SIZE = 8
|
| 25 |
+
MAX_WORKERS = 4
|
| 26 |
|
| 27 |
class TextWindowProcessor:
|
| 28 |
def __init__(self):
|
|
|
|
| 39 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
| 40 |
self.nlp.disable_pipes(*disabled_pipes)
|
| 41 |
|
|
|
|
| 42 |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 43 |
|
| 44 |
def split_into_sentences(self, text: str) -> List[str]:
|
|
|
|
| 61 |
window_sentence_indices = []
|
| 62 |
|
| 63 |
for i in range(len(sentences)):
|
|
|
|
| 64 |
half_window = window_size // 2
|
| 65 |
start_idx = max(0, i - half_window)
|
| 66 |
end_idx = min(len(sentences), i + half_window + 1)
|
| 67 |
|
|
|
|
| 68 |
window = sentences[start_idx:end_idx]
|
| 69 |
windows.append(" ".join(window))
|
| 70 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
|
|
|
| 73 |
|
| 74 |
class TextClassifier:
|
| 75 |
def __init__(self):
|
|
|
|
| 76 |
if not torch.cuda.is_available():
|
| 77 |
torch.set_num_threads(MAX_WORKERS)
|
| 78 |
torch.set_num_interop_threads(MAX_WORKERS)
|
|
|
|
| 85 |
self.initialize_model()
|
| 86 |
|
| 87 |
def initialize_model(self):
|
|
|
|
| 88 |
logger.info("Initializing model and tokenizer...")
|
| 89 |
|
| 90 |
from transformers import DebertaV2TokenizerFast
|
|
|
|
| 123 |
|
| 124 |
predictions = []
|
| 125 |
|
|
|
|
| 126 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 127 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 128 |
|
|
|
|
| 147 |
}
|
| 148 |
predictions.append(prediction)
|
| 149 |
|
|
|
|
| 150 |
del inputs, outputs, probs
|
| 151 |
if torch.cuda.is_available():
|
| 152 |
torch.cuda.empty_cache()
|
|
|
|
| 168 |
}
|
| 169 |
|
| 170 |
def detailed_scan(self, text: str) -> Dict:
|
|
|
|
| 171 |
text = text.rstrip()
|
| 172 |
|
| 173 |
if not text.strip():
|
|
|
|
| 186 |
if not sentences:
|
| 187 |
return {}
|
| 188 |
|
|
|
|
| 189 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 190 |
|
|
|
|
| 191 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 192 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 193 |
|
|
|
|
| 194 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 195 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 196 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
|
|
|
| 207 |
outputs = self.model(**inputs)
|
| 208 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 209 |
|
|
|
|
| 210 |
for window_idx, indices in enumerate(batch_indices):
|
| 211 |
center_idx = len(indices) // 2
|
| 212 |
+
center_weight = 0.7
|
| 213 |
+
edge_weight = 0.3 / (len(indices) - 1)
|
| 214 |
|
| 215 |
for pos, sent_idx in enumerate(indices):
|
|
|
|
| 216 |
weight = center_weight if pos == center_idx else edge_weight
|
| 217 |
sentence_appearances[sent_idx] += weight
|
| 218 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 219 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 220 |
|
|
|
|
| 221 |
del inputs, outputs, probs
|
| 222 |
if torch.cuda.is_available():
|
| 223 |
torch.cuda.empty_cache()
|
| 224 |
|
|
|
|
| 225 |
sentence_predictions = []
|
| 226 |
for i in range(len(sentences)):
|
| 227 |
if sentence_appearances[i] > 0:
|
| 228 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 229 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 230 |
|
|
|
|
| 231 |
if i > 0 and i < len(sentences) - 1:
|
| 232 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 233 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 234 |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 235 |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 236 |
|
|
|
|
| 237 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 238 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 239 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 240 |
|
| 241 |
if current_pred != prev_pred or current_pred != next_pred:
|
|
|
|
| 242 |
smooth_factor = 0.1
|
| 243 |
human_prob = (human_prob * (1 - smooth_factor) +
|
| 244 |
(prev_human + next_human) * smooth_factor / 2)
|
|
|
|
| 269 |
|
| 270 |
if confidence >= CONFIDENCE_THRESHOLD:
|
| 271 |
if pred['prediction'] == 'human':
|
| 272 |
+
color = "#90EE90"
|
| 273 |
else:
|
| 274 |
+
color = "#FFB6C6"
|
| 275 |
else:
|
| 276 |
if pred['prediction'] == 'human':
|
| 277 |
+
color = "#E8F5E9"
|
| 278 |
else:
|
| 279 |
+
color = "#FFEBEE"
|
| 280 |
|
| 281 |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
| 282 |
|
|
|
|
| 304 |
}
|
| 305 |
|
| 306 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
|
|
| 307 |
start_time = time.time()
|
| 308 |
|
|
|
|
| 309 |
word_count = len(text.split())
|
| 310 |
|
|
|
|
| 311 |
original_mode = mode
|
| 312 |
if word_count < 200 and mode == "detailed":
|
| 313 |
mode = "quick"
|
|
|
|
| 321 |
Windows analyzed: {result['num_windows']}
|
| 322 |
"""
|
| 323 |
|
|
|
|
| 324 |
if original_mode == "detailed":
|
| 325 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 326 |
|
|
|
|
| 327 |
execution_time = (time.time() - start_time) * 1000
|
| 328 |
|
| 329 |
return (
|
| 330 |
+
text,
|
| 331 |
"Quick scan mode - no sentence-level analysis available",
|
| 332 |
quick_analysis
|
| 333 |
)
|
|
|
|
| 349 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 350 |
"""
|
| 351 |
|
|
|
|
| 352 |
execution_time = (time.time() - start_time) * 1000
|
| 353 |
|
| 354 |
return (
|
|
|
|
| 357 |
overall_result
|
| 358 |
)
|
| 359 |
|
|
|
|
| 360 |
classifier = TextClassifier()
|
| 361 |
|
|
|
|
| 362 |
demo = gr.Interface(
|
| 363 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 364 |
inputs=[
|
|
|
|
| 385 |
flagging_mode="never"
|
| 386 |
)
|
| 387 |
|
|
|
|
| 388 |
app = demo.app
|
| 389 |
|
| 390 |
app.add_middleware(
|
| 391 |
CORSMiddleware,
|
| 392 |
+
allow_origins=["*"],
|
| 393 |
allow_credentials=True,
|
| 394 |
allow_methods=["GET", "POST", "OPTIONS"],
|
| 395 |
allow_headers=["*"],
|