Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,10 @@ import gradio as gr
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
# Configure logging
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
|
@@ -24,6 +27,37 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
| 24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 25 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
class TextWindowProcessor:
|
| 28 |
def __init__(self):
|
| 29 |
try:
|
|
@@ -420,57 +454,88 @@ class TextClassifier:
|
|
| 420 |
'num_sentences': num_sentences
|
| 421 |
}
|
| 422 |
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
# Initialize the classifier globally
|
| 476 |
classifier = TextClassifier()
|
|
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
+
import time
|
| 14 |
+
import csv
|
| 15 |
+
import os
|
| 16 |
+
from datetime import datetime
|
| 17 |
# Configure logging
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
|
|
|
| 27 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 28 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 29 |
|
| 30 |
+
|
| 31 |
+
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
| 32 |
+
"""Log prediction data to a CSV file in the /tmp directory."""
|
| 33 |
+
# Define the CSV file path
|
| 34 |
+
csv_path = "/tmp/prediction_logs.csv"
|
| 35 |
+
|
| 36 |
+
# Check if file exists to determine if we need to write headers
|
| 37 |
+
file_exists = os.path.isfile(csv_path)
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
with open(csv_path, 'a', newline='', encoding='utf-8') as f:
|
| 41 |
+
writer = csv.writer(f)
|
| 42 |
+
|
| 43 |
+
# Write headers if the file is newly created
|
| 44 |
+
if not file_exists:
|
| 45 |
+
writer.writerow(["timestamp", "word_count", "prediction", "confidence", "execution_time_ms", "analysis_mode", "full_text"])
|
| 46 |
+
|
| 47 |
+
# Clean up the input text for CSV storage (replace newlines with spaces)
|
| 48 |
+
cleaned_text = input_text.replace("\n", " ")
|
| 49 |
+
|
| 50 |
+
# Write the data row with the full text
|
| 51 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 52 |
+
writer.writerow([timestamp, word_count, prediction, f"{confidence:.2f}", f"{execution_time:.2f}", mode, cleaned_text])
|
| 53 |
+
|
| 54 |
+
logger.info(f"Successfully logged prediction data to {csv_path}")
|
| 55 |
+
return True
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.error(f"Error logging prediction data: {str(e)}")
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
|
| 61 |
class TextWindowProcessor:
|
| 62 |
def __init__(self):
|
| 63 |
try:
|
|
|
|
| 454 |
'num_sentences': num_sentences
|
| 455 |
}
|
| 456 |
|
| 457 |
+
|
| 458 |
+
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 459 |
+
"""Analyze text using specified mode and return formatted results."""
|
| 460 |
+
# Start timing
|
| 461 |
+
start_time = time.time()
|
| 462 |
+
|
| 463 |
+
# Count words in the text
|
| 464 |
+
word_count = len(text.split())
|
| 465 |
+
|
| 466 |
+
# If text is less than 200 words and detailed mode is selected, switch to quick mode
|
| 467 |
+
original_mode = mode
|
| 468 |
+
if word_count < 200 and mode == "detailed":
|
| 469 |
+
mode = "quick"
|
| 470 |
+
|
| 471 |
+
if mode == "quick":
|
| 472 |
+
result = classifier.quick_scan(text)
|
| 473 |
+
|
| 474 |
+
quick_analysis = f"""
|
| 475 |
+
PREDICTION: {result['prediction'].upper()}
|
| 476 |
+
Confidence: {result['confidence']*100:.1f}%
|
| 477 |
+
Windows analyzed: {result['num_windows']}
|
| 478 |
+
"""
|
| 479 |
+
|
| 480 |
+
# Add note if mode was switched
|
| 481 |
+
if original_mode == "detailed":
|
| 482 |
+
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 483 |
+
|
| 484 |
+
# Calculate execution time in milliseconds
|
| 485 |
+
execution_time = (time.time() - start_time) * 1000
|
| 486 |
+
|
| 487 |
+
# Log the prediction data
|
| 488 |
+
log_prediction_data(
|
| 489 |
+
input_text=text,
|
| 490 |
+
word_count=word_count,
|
| 491 |
+
prediction=result['prediction'],
|
| 492 |
+
confidence=result['confidence'],
|
| 493 |
+
execution_time=execution_time,
|
| 494 |
+
mode=original_mode
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
return (
|
| 498 |
+
text, # No highlighting in quick mode
|
| 499 |
+
"Quick scan mode - no sentence-level analysis available",
|
| 500 |
+
quick_analysis
|
| 501 |
+
)
|
| 502 |
+
else:
|
| 503 |
+
analysis = classifier.detailed_scan(text)
|
| 504 |
+
|
| 505 |
+
detailed_analysis = []
|
| 506 |
+
for pred in analysis['sentence_predictions']:
|
| 507 |
+
confidence = pred['confidence'] * 100
|
| 508 |
+
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
| 509 |
+
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
| 510 |
+
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
| 511 |
+
detailed_analysis.append("-" * 50)
|
| 512 |
+
|
| 513 |
+
final_pred = analysis['overall_prediction']
|
| 514 |
+
overall_result = f"""
|
| 515 |
+
FINAL PREDICTION: {final_pred['prediction'].upper()}
|
| 516 |
+
Overall confidence: {final_pred['confidence']*100:.1f}%
|
| 517 |
+
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 518 |
+
"""
|
| 519 |
+
|
| 520 |
+
# Calculate execution time in milliseconds
|
| 521 |
+
execution_time = (time.time() - start_time) * 1000
|
| 522 |
+
|
| 523 |
+
# Log the prediction data
|
| 524 |
+
log_prediction_data(
|
| 525 |
+
input_text=text,
|
| 526 |
+
word_count=word_count,
|
| 527 |
+
prediction=final_pred['prediction'],
|
| 528 |
+
confidence=final_pred['confidence'],
|
| 529 |
+
execution_time=execution_time,
|
| 530 |
+
mode=original_mode
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
return (
|
| 534 |
+
analysis['highlighted_text'],
|
| 535 |
+
"\n".join(detailed_analysis),
|
| 536 |
+
overall_result
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
|
| 540 |
# Initialize the classifier globally
|
| 541 |
classifier = TextClassifier()
|