Update app.py
Browse files
app.py
CHANGED
|
@@ -10,11 +10,6 @@ import gradio as gr
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
-
import time
|
| 14 |
-
import csv
|
| 15 |
-
from datetime import datetime
|
| 16 |
-
import threading
|
| 17 |
-
import random
|
| 18 |
|
| 19 |
# Configure logging
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -29,160 +24,6 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
| 29 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 30 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 31 |
|
| 32 |
-
class CSVLogger:
|
| 33 |
-
def __init__(self, log_dir="."):
|
| 34 |
-
"""Initialize the CSV logger.
|
| 35 |
-
|
| 36 |
-
Args:
|
| 37 |
-
log_dir: Directory to store CSV log files
|
| 38 |
-
"""
|
| 39 |
-
self.log_dir = log_dir
|
| 40 |
-
os.makedirs(log_dir, exist_ok=True)
|
| 41 |
-
|
| 42 |
-
# Create monthly CSV files
|
| 43 |
-
current_month = datetime.now().strftime('%Y-%m')
|
| 44 |
-
self.metrics_path = os.path.join(log_dir, f"metrics_{current_month}.csv")
|
| 45 |
-
self.text_path = os.path.join(log_dir, f"text_data_{current_month}.csv")
|
| 46 |
-
|
| 47 |
-
# Define headers
|
| 48 |
-
self.metrics_headers = [
|
| 49 |
-
'entry_id', 'timestamp', 'word_count', 'mode', 'prediction',
|
| 50 |
-
'confidence', 'prediction_time_seconds', 'num_sentences'
|
| 51 |
-
]
|
| 52 |
-
|
| 53 |
-
self.text_headers = ['entry_id', 'timestamp', 'text']
|
| 54 |
-
|
| 55 |
-
# Initialize the files if they don't exist
|
| 56 |
-
self._initialize_files()
|
| 57 |
-
|
| 58 |
-
# Create locks for thread safety
|
| 59 |
-
self.metrics_lock = threading.Lock()
|
| 60 |
-
self.text_lock = threading.Lock()
|
| 61 |
-
|
| 62 |
-
print(f"CSV logger initialized with files at: {os.path.abspath(self.metrics_path)}")
|
| 63 |
-
|
| 64 |
-
def _initialize_files(self):
|
| 65 |
-
"""Create the CSV files with headers if they don't exist."""
|
| 66 |
-
# Initialize metrics file
|
| 67 |
-
if not os.path.exists(self.metrics_path):
|
| 68 |
-
with open(self.metrics_path, 'w', newline='') as f:
|
| 69 |
-
writer = csv.writer(f)
|
| 70 |
-
writer.writerow(self.metrics_headers)
|
| 71 |
-
|
| 72 |
-
# Initialize text data file
|
| 73 |
-
if not os.path.exists(self.text_path):
|
| 74 |
-
with open(self.text_path, 'w', newline='') as f:
|
| 75 |
-
writer = csv.writer(f)
|
| 76 |
-
writer.writerow(self.text_headers)
|
| 77 |
-
|
| 78 |
-
def log_prediction(self, prediction_data, store_text=True):
|
| 79 |
-
"""Log prediction data to CSV files.
|
| 80 |
-
|
| 81 |
-
Args:
|
| 82 |
-
prediction_data: Dictionary containing prediction metrics
|
| 83 |
-
store_text: Whether to store the full text
|
| 84 |
-
"""
|
| 85 |
-
# Generate a unique entry ID
|
| 86 |
-
entry_id = f"{datetime.now().strftime('%Y%m%d%H%M%S')}_{random.randint(1000, 9999)}"
|
| 87 |
-
|
| 88 |
-
# Extract text if present
|
| 89 |
-
text = prediction_data.pop('text', None) if store_text else None
|
| 90 |
-
|
| 91 |
-
# Ensure timestamp is present
|
| 92 |
-
if 'timestamp' not in prediction_data:
|
| 93 |
-
prediction_data['timestamp'] = datetime.now().isoformat()
|
| 94 |
-
|
| 95 |
-
# Add entry_id to metrics data
|
| 96 |
-
metrics_data = prediction_data.copy()
|
| 97 |
-
metrics_data['entry_id'] = entry_id
|
| 98 |
-
|
| 99 |
-
# Start a thread to write data
|
| 100 |
-
thread = threading.Thread(
|
| 101 |
-
target=self._write_to_csv,
|
| 102 |
-
args=(metrics_data, text, entry_id, store_text)
|
| 103 |
-
)
|
| 104 |
-
thread.daemon = True
|
| 105 |
-
thread.start()
|
| 106 |
-
|
| 107 |
-
def _write_to_csv(self, metrics_data, text, entry_id, store_text):
|
| 108 |
-
"""Write data to CSV files with retry mechanism."""
|
| 109 |
-
max_retries = 5
|
| 110 |
-
retry_delay = 0.5
|
| 111 |
-
|
| 112 |
-
# Write metrics data
|
| 113 |
-
for attempt in range(max_retries):
|
| 114 |
-
try:
|
| 115 |
-
with self.metrics_lock:
|
| 116 |
-
with open(self.metrics_path, 'a', newline='') as f:
|
| 117 |
-
writer = csv.writer(f)
|
| 118 |
-
# Prepare row in the correct order based on headers
|
| 119 |
-
row = [
|
| 120 |
-
metrics_data.get('entry_id', ''),
|
| 121 |
-
metrics_data.get('timestamp', ''),
|
| 122 |
-
metrics_data.get('word_count', 0),
|
| 123 |
-
metrics_data.get('mode', ''),
|
| 124 |
-
metrics_data.get('prediction', ''),
|
| 125 |
-
metrics_data.get('confidence', 0.0),
|
| 126 |
-
metrics_data.get('prediction_time_seconds', 0.0),
|
| 127 |
-
metrics_data.get('num_sentences', 0)
|
| 128 |
-
]
|
| 129 |
-
writer.writerow(row)
|
| 130 |
-
print(f"Successfully wrote metrics to CSV, entry_id: {entry_id}")
|
| 131 |
-
break
|
| 132 |
-
except Exception as e:
|
| 133 |
-
print(f"Error writing metrics to CSV (attempt {attempt+1}/{max_retries}): {e}")
|
| 134 |
-
time.sleep(retry_delay * (attempt + 1))
|
| 135 |
-
else:
|
| 136 |
-
# If all retries fail, write to backup file
|
| 137 |
-
backup_path = os.path.join(self.log_dir, f"metrics_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
|
| 138 |
-
try:
|
| 139 |
-
with open(backup_path, 'w', newline='') as f:
|
| 140 |
-
writer = csv.writer(f)
|
| 141 |
-
writer.writerow(self.metrics_headers)
|
| 142 |
-
row = [
|
| 143 |
-
metrics_data.get('entry_id', ''),
|
| 144 |
-
metrics_data.get('timestamp', ''),
|
| 145 |
-
metrics_data.get('word_count', 0),
|
| 146 |
-
metrics_data.get('mode', ''),
|
| 147 |
-
metrics_data.get('prediction', ''),
|
| 148 |
-
metrics_data.get('confidence', 0.0),
|
| 149 |
-
metrics_data.get('prediction_time_seconds', 0.0),
|
| 150 |
-
metrics_data.get('num_sentences', 0)
|
| 151 |
-
]
|
| 152 |
-
writer.writerow(row)
|
| 153 |
-
print(f"Wrote metrics backup to {backup_path}")
|
| 154 |
-
except Exception as e:
|
| 155 |
-
print(f"Error writing metrics backup: {e}")
|
| 156 |
-
|
| 157 |
-
# Write text data if requested
|
| 158 |
-
if store_text and text:
|
| 159 |
-
for attempt in range(max_retries):
|
| 160 |
-
try:
|
| 161 |
-
with self.text_lock:
|
| 162 |
-
with open(self.text_path, 'a', newline='') as f:
|
| 163 |
-
writer = csv.writer(f)
|
| 164 |
-
# Handle potential newlines in text by replacing them
|
| 165 |
-
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
|
| 166 |
-
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
|
| 167 |
-
print(f"Successfully wrote text data to CSV, entry_id: {entry_id}")
|
| 168 |
-
break
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"Error writing text data to CSV (attempt {attempt+1}/{max_retries}): {e}")
|
| 171 |
-
time.sleep(retry_delay * (attempt + 1))
|
| 172 |
-
else:
|
| 173 |
-
# If all retries fail, write to backup file
|
| 174 |
-
backup_path = os.path.join(self.log_dir, f"text_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
|
| 175 |
-
try:
|
| 176 |
-
with open(backup_path, 'w', newline='') as f:
|
| 177 |
-
writer = csv.writer(f)
|
| 178 |
-
writer.writerow(self.text_headers)
|
| 179 |
-
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
|
| 180 |
-
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
|
| 181 |
-
print(f"Wrote text data backup to {backup_path}")
|
| 182 |
-
except Exception as e:
|
| 183 |
-
print(f"Error writing text data backup: {e}")
|
| 184 |
-
|
| 185 |
-
|
| 186 |
class TextWindowProcessor:
|
| 187 |
def __init__(self):
|
| 188 |
try:
|
|
@@ -335,6 +176,100 @@ class TextClassifier:
|
|
| 335 |
'num_windows': len(predictions)
|
| 336 |
}
|
| 337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
def detailed_scan(self, text: str) -> Dict:
|
| 339 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
| 340 |
# Clean up trailing whitespace
|
|
@@ -485,23 +420,8 @@ class TextClassifier:
|
|
| 485 |
'num_sentences': num_sentences
|
| 486 |
}
|
| 487 |
|
| 488 |
-
# Initialize the logger
|
| 489 |
-
csv_logger = CSVLogger(log_dir=".")
|
| 490 |
-
|
| 491 |
-
# Add file listing endpoint for debugging
|
| 492 |
-
def list_files():
|
| 493 |
-
"""List all files in the current directory and subdirectories."""
|
| 494 |
-
all_files = []
|
| 495 |
-
for root, dirs, files in os.walk('.'):
|
| 496 |
-
for file in files:
|
| 497 |
-
all_files.append(os.path.join(root, file))
|
| 498 |
-
return all_files
|
| 499 |
-
|
| 500 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 501 |
"""Analyze text using specified mode and return formatted results."""
|
| 502 |
-
# Start timing the prediction
|
| 503 |
-
start_time = time.time()
|
| 504 |
-
|
| 505 |
# Count words in the text
|
| 506 |
word_count = len(text.split())
|
| 507 |
|
|
@@ -512,58 +432,31 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 512 |
|
| 513 |
if mode == "quick":
|
| 514 |
result = classifier.quick_scan(text)
|
| 515 |
-
prediction = result['prediction']
|
| 516 |
-
confidence = result['confidence']
|
| 517 |
-
num_windows = result['num_windows']
|
| 518 |
|
| 519 |
quick_analysis = f"""
|
| 520 |
-
PREDICTION: {prediction.upper()}
|
| 521 |
-
Confidence: {confidence*100:.1f}%
|
| 522 |
-
Windows analyzed: {num_windows}
|
| 523 |
"""
|
| 524 |
|
| 525 |
# Add note if mode was switched
|
| 526 |
if original_mode == "detailed":
|
| 527 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 528 |
|
| 529 |
-
|
| 530 |
text, # No highlighting in quick mode
|
| 531 |
"Quick scan mode - no sentence-level analysis available",
|
| 532 |
quick_analysis
|
| 533 |
)
|
| 534 |
-
|
| 535 |
-
# End timing
|
| 536 |
-
end_time = time.time()
|
| 537 |
-
prediction_time = end_time - start_time
|
| 538 |
-
|
| 539 |
-
# Log the data
|
| 540 |
-
log_data = {
|
| 541 |
-
"timestamp": datetime.now().isoformat(),
|
| 542 |
-
"word_count": word_count,
|
| 543 |
-
"mode": mode,
|
| 544 |
-
"prediction": prediction,
|
| 545 |
-
"confidence": confidence,
|
| 546 |
-
"prediction_time_seconds": prediction_time,
|
| 547 |
-
"num_sentences": 0, # No sentence analysis in quick mode
|
| 548 |
-
"text": text
|
| 549 |
-
}
|
| 550 |
-
|
| 551 |
-
# Log to CSV
|
| 552 |
-
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
|
| 553 |
-
csv_logger.log_prediction(log_data)
|
| 554 |
-
|
| 555 |
else:
|
| 556 |
analysis = classifier.detailed_scan(text)
|
| 557 |
-
prediction = analysis['overall_prediction']['prediction']
|
| 558 |
-
confidence = analysis['overall_prediction']['confidence']
|
| 559 |
-
num_sentences = analysis['overall_prediction']['num_sentences']
|
| 560 |
|
| 561 |
detailed_analysis = []
|
| 562 |
for pred in analysis['sentence_predictions']:
|
| 563 |
-
|
| 564 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
| 565 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
| 566 |
-
detailed_analysis.append(f"Confidence: {
|
| 567 |
detailed_analysis.append("-" * 50)
|
| 568 |
|
| 569 |
final_pred = analysis['overall_prediction']
|
|
@@ -573,33 +466,11 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 573 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 574 |
"""
|
| 575 |
|
| 576 |
-
|
| 577 |
analysis['highlighted_text'],
|
| 578 |
"\n".join(detailed_analysis),
|
| 579 |
overall_result
|
| 580 |
)
|
| 581 |
-
|
| 582 |
-
# End timing
|
| 583 |
-
end_time = time.time()
|
| 584 |
-
prediction_time = end_time - start_time
|
| 585 |
-
|
| 586 |
-
# Log the data
|
| 587 |
-
log_data = {
|
| 588 |
-
"timestamp": datetime.now().isoformat(),
|
| 589 |
-
"word_count": word_count,
|
| 590 |
-
"mode": mode,
|
| 591 |
-
"prediction": prediction,
|
| 592 |
-
"confidence": confidence,
|
| 593 |
-
"prediction_time_seconds": prediction_time,
|
| 594 |
-
"num_sentences": num_sentences,
|
| 595 |
-
"text": text
|
| 596 |
-
}
|
| 597 |
-
|
| 598 |
-
# Log to CSV
|
| 599 |
-
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
|
| 600 |
-
csv_logger.log_prediction(log_data)
|
| 601 |
-
|
| 602 |
-
return output
|
| 603 |
|
| 604 |
# Initialize the classifier globally
|
| 605 |
classifier = TextClassifier()
|
|
@@ -626,7 +497,7 @@ demo = gr.Interface(
|
|
| 626 |
gr.Textbox(label="Overall Result", lines=4)
|
| 627 |
],
|
| 628 |
title="AI Text Detector",
|
| 629 |
-
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.
|
| 630 |
api_name="predict",
|
| 631 |
flagging_mode="never"
|
| 632 |
)
|
|
@@ -640,26 +511,8 @@ app.add_middleware(
|
|
| 640 |
allow_headers=["*"],
|
| 641 |
)
|
| 642 |
|
| 643 |
-
# Add file listing endpoint for debugging
|
| 644 |
-
@app.get("/list_files")
|
| 645 |
-
async def get_files():
|
| 646 |
-
return {"files": list_files()}
|
| 647 |
-
|
| 648 |
# Ensure CORS is applied before launching
|
| 649 |
if __name__ == "__main__":
|
| 650 |
-
# Create empty CSV files if they don't exist
|
| 651 |
-
current_month = datetime.now().strftime('%Y-%m')
|
| 652 |
-
metrics_path = f"metrics_{current_month}.csv"
|
| 653 |
-
text_path = f"text_data_{current_month}.csv"
|
| 654 |
-
|
| 655 |
-
print(f"Current directory: {os.getcwd()}")
|
| 656 |
-
print(f"Looking for CSV files: {metrics_path}, {text_path}")
|
| 657 |
-
|
| 658 |
-
if not os.path.exists(metrics_path):
|
| 659 |
-
print(f"Creating metrics CSV file: {metrics_path}")
|
| 660 |
-
if not os.path.exists(text_path):
|
| 661 |
-
print(f"Creating text data CSV file: {text_path}")
|
| 662 |
-
|
| 663 |
demo.queue()
|
| 664 |
demo.launch(
|
| 665 |
server_name="0.0.0.0",
|
|
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Configure logging
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 25 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
class TextWindowProcessor:
|
| 28 |
def __init__(self):
|
| 29 |
try:
|
|
|
|
| 176 |
'num_windows': len(predictions)
|
| 177 |
}
|
| 178 |
|
| 179 |
+
# def detailed_scan(self, text: str) -> Dict:
|
| 180 |
+
# """Original prediction method with modified window handling"""
|
| 181 |
+
# if self.model is None or self.tokenizer is None:
|
| 182 |
+
# self.load_model()
|
| 183 |
+
|
| 184 |
+
# self.model.eval()
|
| 185 |
+
# sentences = self.processor.split_into_sentences(text)
|
| 186 |
+
# if not sentences:
|
| 187 |
+
# return {}
|
| 188 |
+
|
| 189 |
+
# # Create centered windows for each sentence
|
| 190 |
+
# windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 191 |
+
|
| 192 |
+
# # Track scores for each sentence
|
| 193 |
+
# sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 194 |
+
# sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 195 |
+
|
| 196 |
+
# # Process windows in batches
|
| 197 |
+
# batch_size = 16
|
| 198 |
+
# for i in range(0, len(windows), batch_size):
|
| 199 |
+
# batch_windows = windows[i:i + batch_size]
|
| 200 |
+
# batch_indices = window_sentence_indices[i:i + batch_size]
|
| 201 |
+
|
| 202 |
+
# inputs = self.tokenizer(
|
| 203 |
+
# batch_windows,
|
| 204 |
+
# truncation=True,
|
| 205 |
+
# padding=True,
|
| 206 |
+
# max_length=MAX_LENGTH,
|
| 207 |
+
# return_tensors="pt"
|
| 208 |
+
# ).to(self.device)
|
| 209 |
+
|
| 210 |
+
# with torch.no_grad():
|
| 211 |
+
# outputs = self.model(**inputs)
|
| 212 |
+
# probs = F.softmax(outputs.logits, dim=-1)
|
| 213 |
+
|
| 214 |
+
# # Attribute predictions more carefully
|
| 215 |
+
# for window_idx, indices in enumerate(batch_indices):
|
| 216 |
+
# center_idx = len(indices) // 2
|
| 217 |
+
# center_weight = 0.7 # Higher weight for center sentence
|
| 218 |
+
# edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 219 |
+
|
| 220 |
+
# for pos, sent_idx in enumerate(indices):
|
| 221 |
+
# # Apply higher weight to center sentence
|
| 222 |
+
# weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
+
# sentence_appearances[sent_idx] += weight
|
| 224 |
+
# sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 225 |
+
# sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 226 |
+
|
| 227 |
+
# del inputs, outputs, probs
|
| 228 |
+
# if torch.cuda.is_available():
|
| 229 |
+
# torch.cuda.empty_cache()
|
| 230 |
+
|
| 231 |
+
# # Calculate final predictions
|
| 232 |
+
# sentence_predictions = []
|
| 233 |
+
# for i in range(len(sentences)):
|
| 234 |
+
# if sentence_appearances[i] > 0:
|
| 235 |
+
# human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 236 |
+
# ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 237 |
+
|
| 238 |
+
# # Only apply minimal smoothing at prediction boundaries
|
| 239 |
+
# if i > 0 and i < len(sentences) - 1:
|
| 240 |
+
# prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 241 |
+
# prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 242 |
+
# next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 243 |
+
# next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 244 |
+
|
| 245 |
+
# # Check if we're at a prediction boundary
|
| 246 |
+
# current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 247 |
+
# prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 248 |
+
# next_pred = 'human' if next_human > next_ai else 'ai'
|
| 249 |
+
|
| 250 |
+
# if current_pred != prev_pred or current_pred != next_pred:
|
| 251 |
+
# # Small adjustment at boundaries
|
| 252 |
+
# smooth_factor = 0.1
|
| 253 |
+
# human_prob = (human_prob * (1 - smooth_factor) +
|
| 254 |
+
# (prev_human + next_human) * smooth_factor / 2)
|
| 255 |
+
# ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 256 |
+
# (prev_ai + next_ai) * smooth_factor / 2)
|
| 257 |
+
|
| 258 |
+
# sentence_predictions.append({
|
| 259 |
+
# 'sentence': sentences[i],
|
| 260 |
+
# 'human_prob': human_prob,
|
| 261 |
+
# 'ai_prob': ai_prob,
|
| 262 |
+
# 'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 263 |
+
# 'confidence': max(human_prob, ai_prob)
|
| 264 |
+
# })
|
| 265 |
+
|
| 266 |
+
# return {
|
| 267 |
+
# 'sentence_predictions': sentence_predictions,
|
| 268 |
+
# 'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 269 |
+
# 'full_text': text,
|
| 270 |
+
# 'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 271 |
+
# }
|
| 272 |
+
|
| 273 |
def detailed_scan(self, text: str) -> Dict:
|
| 274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
| 275 |
# Clean up trailing whitespace
|
|
|
|
| 420 |
'num_sentences': num_sentences
|
| 421 |
}
|
| 422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 424 |
"""Analyze text using specified mode and return formatted results."""
|
|
|
|
|
|
|
|
|
|
| 425 |
# Count words in the text
|
| 426 |
word_count = len(text.split())
|
| 427 |
|
|
|
|
| 432 |
|
| 433 |
if mode == "quick":
|
| 434 |
result = classifier.quick_scan(text)
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
quick_analysis = f"""
|
| 437 |
+
PREDICTION: {result['prediction'].upper()}
|
| 438 |
+
Confidence: {result['confidence']*100:.1f}%
|
| 439 |
+
Windows analyzed: {result['num_windows']}
|
| 440 |
"""
|
| 441 |
|
| 442 |
# Add note if mode was switched
|
| 443 |
if original_mode == "detailed":
|
| 444 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 445 |
|
| 446 |
+
return (
|
| 447 |
text, # No highlighting in quick mode
|
| 448 |
"Quick scan mode - no sentence-level analysis available",
|
| 449 |
quick_analysis
|
| 450 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
else:
|
| 452 |
analysis = classifier.detailed_scan(text)
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
detailed_analysis = []
|
| 455 |
for pred in analysis['sentence_predictions']:
|
| 456 |
+
confidence = pred['confidence'] * 100
|
| 457 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
| 458 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
| 459 |
+
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
| 460 |
detailed_analysis.append("-" * 50)
|
| 461 |
|
| 462 |
final_pred = analysis['overall_prediction']
|
|
|
|
| 466 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 467 |
"""
|
| 468 |
|
| 469 |
+
return (
|
| 470 |
analysis['highlighted_text'],
|
| 471 |
"\n".join(detailed_analysis),
|
| 472 |
overall_result
|
| 473 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
# Initialize the classifier globally
|
| 476 |
classifier = TextClassifier()
|
|
|
|
| 497 |
gr.Textbox(label="Overall Result", lines=4)
|
| 498 |
],
|
| 499 |
title="AI Text Detector",
|
| 500 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
| 501 |
api_name="predict",
|
| 502 |
flagging_mode="never"
|
| 503 |
)
|
|
|
|
| 511 |
allow_headers=["*"],
|
| 512 |
)
|
| 513 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
# Ensure CORS is applied before launching
|
| 515 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
demo.queue()
|
| 517 |
demo.launch(
|
| 518 |
server_name="0.0.0.0",
|