File size: 12,033 Bytes
04fc5d3
2d65dc3
b42f9d4
04fc5d3
a85b199
 
8a27130
 
 
 
 
 
ae14666
04fc5d3
4fbdbc2
04fc5d3
 
 
 
 
 
 
 
4fbdbc2
 
 
 
04fc5d3
 
 
 
 
4fbdbc2
 
 
04fc5d3
 
 
 
 
 
e54bb7f
 
aba5a2f
e54bb7f
284713a
ae14666
555572c
e54bb7f
04fc5d3
e54bb7f
04fc5d3
e54bb7f
 
04fc5d3
e54bb7f
 
aba5a2f
e54bb7f
ae14666
 
e54bb7f
 
ae14666
04fc5d3
e54bb7f
 
ae14666
 
 
 
 
e54bb7f
 
ae14666
 
555572c
ae14666
e54bb7f
 
ae14666
e54bb7f
 
04fc5d3
ae14666
 
 
 
 
b42f9d4
 
 
567d244
b42f9d4
 
 
 
 
 
567d244
b42f9d4
 
 
 
 
567d244
b42f9d4
 
 
 
567d244
b42f9d4
567d244
 
b42f9d4
 
 
 
567d244
 
 
 
 
 
d7a4454
 
 
 
 
567d244
b42f9d4
 
 
d7a4454
567d244
 
 
b42f9d4
 
 
 
 
 
 
 
 
d7a4454
 
 
b42f9d4
 
 
 
 
 
 
 
 
567d244
b42f9d4
 
 
 
 
 
 
567d244
b42f9d4
 
 
 
 
 
 
 
4fbdbc2
 
 
567d244
85da5f9
b42f9d4
 
ae14666
b42f9d4
e54bb7f
 
 
 
b42f9d4
 
 
 
 
2d65dc3
b42f9d4
 
 
85da5f9
567d244
 
e54bb7f
b42f9d4
 
 
 
 
567d244
 
b42f9d4
567d244
e54bb7f
 
 
 
 
b42f9d4
 
1da8995
 
9e64968
 
 
 
1da8995
b42f9d4
e54bb7f
 
 
 
b42f9d4
e54bb7f
b42f9d4
567d244
 
85da5f9
 
 
 
 
 
b42f9d4
567d244
e54bb7f
 
 
 
 
 
 
 
 
b42f9d4
e54bb7f
2d65dc3
 
 
8a27130
2d65dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253d109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb3586
 
 
 
 
 
 
 
555572c
fcb3586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555572c
fcb3586
 
 
 
 
2a285f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import nltk, re
import tensorflow as tf
from tqdm import tqdm

# Will download the necessary resources for nltk
# Should skip if resources found
try:
    stopwords = nltk.corpus.stopwords.words("french")
except LookupError:
    nltk.download("punkt_tab")
    nltk.download("stopwords")
    stopwords = nltk.corpus.stopwords.words("french")


def get_tagged_content(sentence: str, tag: str) -> str | None:
    """
    Extract the content between two tags in a sentence given the tag.

    Args:
      sentence (str): The sentence to extract the content from.
      tag (str): The tag to extract the content between.

    Returns:
      str | None: The content between the tags. None if not found

    Raises:
      ValueError: If tag is not provided or tag not str.

    Example:
      >>> get_tagged_content("Je voudrais voyager de <Dep>Nice<Dep> à <Arr>Clermont Ferrand<Arr>.", "<Dep>")
      "Nice"
    """
    if not tag or not isinstance(tag, str):
        raise ValueError("tag must be a non-empty string")

    tag_match = re.search(rf"{tag}(.*?){tag}", sentence)
    if tag_match:
        return tag_match.group(1)
    return None


def process_sentence(
    sentence: str,
    rm_stopwords: bool = False,
    stemming: bool = False,
    return_tokens: bool = False,
    labels_to_adapt: list[int | str] | None = None,
    stopwords_to_keep: list[str] = [],
) -> str:
    """
    Given a sentence, apply some processing techniques to the sentence and return the processed sentence

     **Note**: We are stemming the tokens instead of lemmatizing them because stemming is faster and in our case
     we are interested in getting a response the fastest way possible.

     Args:
       sentence (str): The sentence to process.
       rm_stopwords (bool): Whether to remove stopwords.
       stemming (bool): Whether to stem the tokens.
       return_tokens (bool): Whether to return the tokens instead of the sentence.
       labels_to_adapt (list[int | str] | None): The labels to adapt.

     Returns:
       str | list | (list | str, list): The processed sentence or the processed sentence and the adapted labels based on what's left in the sentence.
    """
    tokenized_sentence = nltk.word_tokenize(sentence)
    stemmer = nltk.stem.snowball.FrenchStemmer()
    return_labels = bool(labels_to_adapt)
    labels_to_adapt = (
        [0] * len(tokenized_sentence) if not labels_to_adapt else labels_to_adapt
    )  # default labels
    labels = []
    processed_sentence = ""

    for token, label in zip(tokenized_sentence, labels_to_adapt):
        # Skipping stopwords
        if token in stopwords and rm_stopwords and token not in stopwords_to_keep:
            continue
        token = token if not stemming else stemmer.stem(token)
        processed_sentence += token + " "
        labels.append(label)

    processed_sentence = processed_sentence.strip()

    processed_sentence = (
        processed_sentence if not return_tokens else processed_sentence.split(" ")
    )

    return processed_sentence if not return_labels else (processed_sentence, labels)


def convert_tagged_sentence_to_bio(
    sentence: str, tag_entities_pairs: list[tuple[str, str]]
) -> str:
    """
    Given a sentence with tags, convert the sentence to BIO format.

    Args:
      sentence (str): The sentence to convert to BIO format.
      tag_entities_pairs (list[tuple[str, str]]): The tags and entities to convert to BIO format

    Returns:
      str: The sentence in BIO format

    Example:
      >>> convert_tagged_sentence_to_bio("Je voudrais voyager de <Dep>Nice<Dep> à <Arr>Clermont Ferrand<Arr>.", [("Dep", "LOC-DEP"), ("Arr", "LOC-ARR")])
      Je O
      voudrais O
      voyager O
      de O
      Nice B-LOC-DEP
      à O
      Clermont B-LOC-ARR
      Ferrand I-LOC-ARR
      . O
    """
    bare_sentence = sentence

    tags = [pair[0] for pair in tag_entities_pairs]
    entities = [pair[1] for pair in tag_entities_pairs]

    for tag in tags:
        bare_sentence = bare_sentence.replace(tag, "")

    # extended entities
    ext_entities = []
    for entity in entities:
        ext_entities.extend(["B-" + entity, "I-" + entity])

    for tag, entity in tag_entities_pairs:
        while re.search(f"{tag}(.*?){tag}", sentence):
            match = re.search(f"{tag}(.*?){tag}", sentence)
            temp_entities = [entity] * len(nltk.word_tokenize(match.group(1)))
            temp_entities[0] = "B-" + entity
            if len(temp_entities) > 1:
                for i in range(1, len(temp_entities)):
                    temp_entities[i] = "I-" + entity
            sentence = (
                sentence[: match.start()]
                + " ".join(temp_entities)
                + sentence[match.end() :]
            )

    tokens = nltk.word_tokenize(sentence)
    bare_sentence_tokens = nltk.word_tokenize(bare_sentence)

    tokenized_entities = [
        "O" if not token in ext_entities else token for token in tokens
    ]
    bio_format = [
        " ".join([token, entity])
        for token, entity in zip(bare_sentence_tokens, tokenized_entities)
    ]

    return "\n".join(bio_format)


def from_tagged_file_to_bio_file(
    input_file: str, output_file: str, tag_entities_pairs: list[tuple[str, str]]
) -> None:
    """
    Given an input file and an output file, read the input file, convert the content to BIO format, and write the content to the output file.

    Args:
      input_file (str): The path to the input file.
      output_file (str): The path to the output file.
      tag_entities_pairs (list[tuple[str, str]]): The tags and entities to convert to BIO format.
      entities (list[str]): The entities to convert to BIO format.
    """
    with open(input_file, "r") as file:
        content = file.read()

    with open(output_file, "w") as file:
        sentences = content.split("\n")
        for sentence in tqdm(sentences):
            # skip empty lines
            if not sentence:
                continue
            bio_format = convert_tagged_sentence_to_bio(sentence, tag_entities_pairs)
            file.write(bio_format + "\n\n")


def from_bio_file_to_examples(file_path: str) -> tuple:
    """
    Given a file path, read the file and convert the content to a tuple of sentences and their respective labels vectors.

    **Note**: We are stemming the tokens instead of lemmatizing them because stemming is faster and in our case
    we are interested in getting a response the fastest way possible.

    Args:
      file_path (str): The path to the file to read.

    Returns:
      tuple: A tuple containing the inputs and labels (inputs, labels).
    """
    with open(file_path, "r") as file:
        content = file.read()

    lines = content.split("\n")

    sentences = []
    labels = []

    unique_labels = set()

    # getting all the unique labels
    for line in lines:
        if (len(line.split(" "))) < 2:
            continue
        word, label = line.split(" ")
        label = (
            "-".join(label.split("-")[-2:])
            if label.startswith("B") or label.startswith("I")
            else label
        )
        unique_labels.add(label)

    unique_labels = list(unique_labels)

    SORT_ORDER = {"O": 0, "LOC-DEP": 1, "LOC-ARR": 2}

    # "O" (first) and "DEP" (if present has to be second)
    unique_labels = sorted(unique_labels, key=lambda x: SORT_ORDER[x])

    # mapping labels to ids
    unique_labels = {label: i for i, label in enumerate(unique_labels)}

    # tracking the vocabulary
    vocab = set()

    sentence_words = []
    sentence_labels = []
    for line in lines:
        if (len(line.split(" "))) < 2:
            if len(sentence_words) == 0:
                continue
            sentences.append(" ".join(sentence_words))
            labels.append(sentence_labels)
            sentence_words = []
            sentence_labels = []
            continue
        word, label = line.split(" ")
        label = (
            "-".join(label.split("-")[-2:])
            if label.startswith("B") or label.startswith("I")
            else label
        )
        label = unique_labels[label]
        sentence_words.append(word)
        sentence_labels.append(label)
        vocab.add(word)

    return (sentences, labels, vocab, unique_labels)


def from_examples_to_tf_dataset(
    inputs: tuple[list[list[int]], list[list[int]]],
) -> tf.data.Dataset:
    """
    Given a tuple of inputs and labels, convert the tuple to a TensorFlow dataset.

    Args:
      inputs (tuple[list[list[int]], list[list[int]]): A tuple containing the inputs and labels (inputs, labels).

    Returns:
      tf.data.Dataset: The TensorFlow dataset.
    """

    def gen():
        for input, label in zip(inputs[0], inputs[1]):
            yield input, label

    dataset = tf.data.Dataset.from_generator(
        gen,
        output_signature=(
            tf.TensorSpec(shape=(None), dtype=tf.int32),
            tf.TensorSpec(shape=(None), dtype=tf.int32),
        ),
    )

    return dataset


def encode_and_pad_sentence(sentence: str, vocab: dict, max_len: int) -> list[int]:
    """
    Given a sentence, a vocabulary, and a maximum length, encode the sentence and pad it to the maximum length.

    Args:
      sentence (str): The sentence to encode and pad.
      vocab (dict): The vocabulary to use for encoding.
      max_len (int): The maximum length to pad the sentence to.

    Returns:
      list[int]: The encoded and padded sentence.
    """
    encoded_sentence = [
        vocab.index(word) if word in vocab else vocab.index("<UNK>")
        for word in sentence
    ]

    return tf.keras.utils.pad_sequences(
        [encoded_sentence], maxlen=max_len, padding="post", value=0
    )[0]


def process_sentences_and_labels(
    sentences,
    labels,
    rm_stopwords: bool = False,
    stemming: bool = True,
    return_tokens: bool = False,
    stopwords_to_keep: list[str] = [],
):
    """
    Process the sentences and labels using the process_sentence function from the data_processing module.

    Args:
    sentences (list): List of sentences to process.
    labels (list): List of labels to process.
    rm_stopwords (bool): Whether to remove stopwords from the sentences.
    stemming (bool): Whether to apply stemming to the sentences.
    return_tokens (bool): Whether to return the tokens of the sentences.

    Returns:
    processed_sentences (list): List of processed sentences.
    processed_labels (list): List of processed labels.
    """
    processed_sentences = []
    processed_labels = []

    for sentence, label in zip(sentences, labels):
        sentence, label = process_sentence(
            sentence,
            labels_to_adapt=label,
            rm_stopwords=rm_stopwords,
            stemming=stemming,
            return_tokens=return_tokens,
            stopwords_to_keep=stopwords_to_keep,
        )
        processed_sentences.append(sentence)
        processed_labels.append(label)

    return processed_sentences, processed_labels


def encode_and_pad_sentence(sentence: str, vocab: list[str], max_length: int = 100):
    """
    Encode a sentence into a list of integers

    Parameters:
    sentence (str): The sentence to encode
    vocab (list): The vocabulary

    Returns:
    list: The list of integers
    """
    encoded_sentence = [
        vocab.index(word) if word in vocab else vocab.index("<UNK>")
        for word in sentence
    ]

    return tf.keras.utils.pad_sequences(
        [encoded_sentence], maxlen=max_length, padding="post", value=0
    )[0]


def encode_and_pad_sentence_pos(
    sentence_pos: str, pos_tags: list[str], max_length: int = 100
):
    """
    Encode a sentence into a list of integers

    Parameters:
    sentence (str): The sentence to encode
    pos_tags (list): The vocabulary

    Returns:
    list: The list of integers
    """
    encoded_sentence = [pos_tags.index(pos) for pos in sentence_pos]

    return tf.keras.utils.pad_sequences(
        [encoded_sentence], maxlen=max_length, padding="post", value=0
    )[0]