File size: 14,167 Bytes
5b3b0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import random
import warnings
import os
import time
from glob import glob
from skimage import color, io
from PIL import Image

import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)

import torch
from torchvision.transforms import ColorJitter, functional, Compose
import torch.nn.functional as F

def get_middlebury_images():
    root = "datasets/Middlebury/MiddEval3"
    with open(os.path.join(root, "official_train.txt"), 'r') as f:
        lines = f.read().splitlines()
    return sorted([os.path.join(root, 'trainingQ', f'{name}/im0.png') for name in lines])

def get_eth3d_images():
    return sorted(glob('datasets/ETH3D/two_view_training/*/im0.png'))

def get_kitti_images():
    return sorted(glob('datasets/KITTI/training/image_2/*_10.png'))

def transfer_color(image, style_mean, style_stddev):
    reference_image_lab = color.rgb2lab(image)
    reference_stddev = np.std(reference_image_lab, axis=(0,1), keepdims=True)# + 1
    reference_mean = np.mean(reference_image_lab, axis=(0,1), keepdims=True)

    reference_image_lab = reference_image_lab - reference_mean
    lamb = style_stddev/reference_stddev
    style_image_lab = lamb * reference_image_lab
    output_image_lab = style_image_lab + style_mean
    l, a, b = np.split(output_image_lab, 3, axis=2)
    l = l.clip(0, 100)
    output_image_lab = np.concatenate((l,a,b), axis=2)
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=UserWarning)
        output_image_rgb = color.lab2rgb(output_image_lab) * 255
        return output_image_rgb

class AdjustGamma(object):

    def __init__(self, gamma_min, gamma_max, gain_min=1.0, gain_max=1.0):
        self.gamma_min, self.gamma_max, self.gain_min, self.gain_max = gamma_min, gamma_max, gain_min, gain_max

    def __call__(self, sample):
        gain = random.uniform(self.gain_min, self.gain_max)
        gamma = random.uniform(self.gamma_min, self.gamma_max)
        return functional.adjust_gamma(sample, gamma, gain)

    def __repr__(self):
        return f"Adjust Gamma {self.gamma_min}, ({self.gamma_max}) and Gain ({self.gain_min}, {self.gain_max})"

class FlowAugmentor:
    def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True, yjitter=False, saturation_range=[0.6,1.4], gamma=[1,1,1,1]):

        # spatial augmentation params
        self.crop_size = crop_size
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.spatial_aug_prob = 1.0
        self.stretch_prob = 0.8
        self.max_stretch = 0.2

        # flip augmentation params
        self.yjitter = yjitter
        self.do_flip = do_flip
        self.h_flip_prob = 0.5
        self.v_flip_prob = 0.1

        # photometric augmentation params
        self.photo_aug = Compose([ColorJitter(brightness=0.4, contrast=0.4, saturation=saturation_range, hue=0.5/3.14), AdjustGamma(*gamma)])
        self.asymmetric_color_aug_prob = 0.2
        self.eraser_aug_prob = 0.5

    def color_transform(self, img1, img2):
        """ Photometric augmentation """

        # asymmetric
        if np.random.rand() < self.asymmetric_color_aug_prob:
            img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
            img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)

        # symmetric
        else:
            image_stack = np.concatenate([img1, img2], axis=0)
            image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
            img1, img2 = np.split(image_stack, 2, axis=0)

        return img1, img2

    def eraser_transform(self, img1, img2, bounds=[50, 100]):
        """ Occlusion augmentation """

        ht, wd = img1.shape[:2]
        if np.random.rand() < self.eraser_aug_prob:
            mean_color = np.mean(img2.reshape(-1, 3), axis=0)
            for _ in range(np.random.randint(1, 3)):
                x0 = np.random.randint(0, wd)
                y0 = np.random.randint(0, ht)
                dx = np.random.randint(bounds[0], bounds[1])
                dy = np.random.randint(bounds[0], bounds[1])
                img2[y0:y0+dy, x0:x0+dx, :] = mean_color

        return img1, img2

    def spatial_transform(self, img1, img2, flow, intrinsic):
        # randomly sample scale
        ht, wd = img1.shape[:2]
        min_scale = np.maximum(
            (self.crop_size[0] + 8) / float(ht), 
            (self.crop_size[1] + 8) / float(wd))

        scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
        scale_x = scale
        scale_y = scale
        if np.random.rand() < self.stretch_prob:
            scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
            scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
        
        scale_x = np.clip(scale_x, min_scale, None)
        scale_y = np.clip(scale_y, min_scale, None)

        if np.random.rand() < self.spatial_aug_prob:
            # rescale the images
            img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            flow = flow * [scale_x, scale_y]
            if intrinsic is not None:
                intrinsic = [intrinsic[0]*scale_x, intrinsic[1]*scale_y, intrinsic[2]*scale_x, intrinsic[3]*scale_y]

        if self.do_flip:
            if np.random.rand() < self.h_flip_prob and self.do_flip == 'hf': # h-flip
                img1 = img1[:, ::-1]
                img2 = img2[:, ::-1]
                flow = flow[:, ::-1] * [-1.0, 1.0]

            if np.random.rand() < self.h_flip_prob and self.do_flip == 'h': # h-flip for stereo
                tmp = img1[:, ::-1]
                img1 = img2[:, ::-1]
                img2 = tmp

            if np.random.rand() < self.v_flip_prob and self.do_flip == 'v': # v-flip
                img1 = img1[::-1, :]
                img2 = img2[::-1, :]
                flow = flow[::-1, :] * [1.0, -1.0]

        if self.yjitter:
            y0 = np.random.randint(2, img1.shape[0] - self.crop_size[0] - 2)
            x0 = np.random.randint(2, img1.shape[1] - self.crop_size[1] - 2)

            y1 = y0 + np.random.randint(-2, 2 + 1)
            img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
            img2 = img2[y1:y1+self.crop_size[0], x0:x0+self.crop_size[1]]
            flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]

        else:
            y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
            x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
            
            img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
            img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
            flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] - x0
            intrinsic[3] = intrinsic[3] - y0 

        return img1, img2, flow, intrinsic


    def __call__(self, img1, img2, flow, intrinsic=None):
        img1, img2 = self.color_transform(img1, img2)
        img1, img2 = self.eraser_transform(img1, img2)
        img1, img2, flow, intrinsic = self.spatial_transform(img1, img2, flow, intrinsic)

        img1 = np.ascontiguousarray(img1)
        img2 = np.ascontiguousarray(img2)
        flow = np.ascontiguousarray(flow)
        if intrinsic is not None:
            intrinsic= np.array(intrinsic)

        return img1, img2, flow, intrinsic

class SparseFlowAugmentor:
    def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False, yjitter=False, saturation_range=[0.7,1.3], gamma=[1,1,1,1]):
        # spatial augmentation params
        self.crop_size = crop_size
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.spatial_aug_prob = 0.8
        self.stretch_prob = 0.8
        self.max_stretch = 0.2

        # flip augmentation params
        self.do_flip = do_flip
        self.h_flip_prob = 0.5
        self.v_flip_prob = 0.1

        # photometric augmentation params
        self.photo_aug = Compose([ColorJitter(brightness=0.3, contrast=0.3, saturation=saturation_range, hue=0.3/3.14), AdjustGamma(*gamma)])
        self.asymmetric_color_aug_prob = 0.2
        self.eraser_aug_prob = 0.5
        
    def color_transform(self, img1, img2):
        image_stack = np.concatenate([img1, img2], axis=0)
        image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
        img1, img2 = np.split(image_stack, 2, axis=0)
        return img1, img2

    def eraser_transform(self, img1, img2):
        ht, wd = img1.shape[:2]
        if np.random.rand() < self.eraser_aug_prob:
            mean_color = np.mean(img2.reshape(-1, 3), axis=0)
            for _ in range(np.random.randint(1, 3)):
                x0 = np.random.randint(0, wd)
                y0 = np.random.randint(0, ht)
                dx = np.random.randint(50, 100)
                dy = np.random.randint(50, 100)
                img2[y0:y0+dy, x0:x0+dx, :] = mean_color

        return img1, img2

    def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0):
        ht, wd = flow.shape[:2]
        coords = np.meshgrid(np.arange(wd), np.arange(ht))
        coords = np.stack(coords, axis=-1)

        coords = coords.reshape(-1, 2).astype(np.float32)
        flow = flow.reshape(-1, 2).astype(np.float32)
        valid = valid.reshape(-1).astype(np.float32)

        coords0 = coords[valid>=1]
        flow0 = flow[valid>=1]

        ht1 = int(round(ht * fy))
        wd1 = int(round(wd * fx))

        coords1 = coords0 * [fx, fy]
        flow1 = flow0 * [fx, fy]

        xx = np.round(coords1[:,0]).astype(np.int32)
        yy = np.round(coords1[:,1]).astype(np.int32)

        v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
        xx = xx[v]
        yy = yy[v]
        flow1 = flow1[v]

        flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32)
        valid_img = np.zeros([ht1, wd1], dtype=np.int32)

        flow_img[yy, xx] = flow1
        valid_img[yy, xx] = 1

        return flow_img, valid_img

    def pad_images(self, img1, img2, flow, valid, intrinsic):
        ch, cw = self.crop_size
        padded_data = []

        for data in [img1, img2, flow, valid]:
            h, w = data.shape[:2]
            pad_h = max(0, ch - h)
            pad_w = max(0, cw - w)
            
            if pad_h > 0 or pad_w > 0:
                pad_width = ((0, pad_h), (0, pad_w)) + ((0, 0),) * (data.ndim - 2)
                padded_data.append(np.pad(data, pad_width, mode='constant', constant_values=0))
            else:
                padded_data.append(data)

        return padded_data, intrinsic

    def spatial_transform(self, img1, img2, flow, valid, intrinsic):
        # randomly sample scale

        ht, wd = img1.shape[:2]
        min_scale = np.maximum(
            (self.crop_size[0] + 1) / float(ht), 
            (self.crop_size[1] + 1) / float(wd))

        scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
        scale_x = np.clip(scale, min_scale, None)
        scale_y = np.clip(scale, min_scale, None)

        if np.random.rand() < self.spatial_aug_prob:
            # rescale the images
            img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y)
            if intrinsic is not None:
                intrinsic = [intrinsic[0]*scale_x, intrinsic[1]*scale_y, intrinsic[2]*scale_x, intrinsic[3]*scale_y]

        if self.do_flip:
            if np.random.rand() < self.h_flip_prob and self.do_flip == 'hf': # h-flip
                img1 = img1[:, ::-1]
                img2 = img2[:, ::-1]
                flow = flow[:, ::-1] * [-1.0, 1.0]

            if np.random.rand() < self.h_flip_prob and self.do_flip == 'h': # h-flip for stereo
                tmp = img1[:, ::-1]
                img1 = img2[:, ::-1]
                img2 = tmp

            if np.random.rand() < self.v_flip_prob and self.do_flip == 'v': # v-flip
                img1 = img1[::-1, :]
                img2 = img2[::-1, :]
                flow = flow[::-1, :] * [1.0, -1.0]

        margin_y = 20
        margin_x = 50

        img1, img2, flow, valid, intrinsic = self.pad_images(img1, img2, flow, valid, intrinsic)
        # img1_raw_shape = img1.shape
        # valid_raw_shape = valid.shape

        y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y)
        x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x)

        y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0])
        x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1])

        img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
        img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
        flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
        valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]

        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] - x0
            intrinsic[3] = intrinsic[3] - y0

        # print("-"*10, "SparseFlowAugmentor: ", self.crop_size, [x0,y0], img1.shape, img1_raw_shape, valid.shape, valid_raw_shape)
        return img1, img2, flow, valid, intrinsic


    def __call__(self, img1, img2, flow, valid, intrinsic=None):
        img1, img2 = self.color_transform(img1, img2)
        img1, img2 = self.eraser_transform(img1, img2)
        img1, img2, flow, valid, intrinsic = self.spatial_transform(img1, img2, flow, valid, intrinsic)

        img1 = np.ascontiguousarray(img1)
        img2 = np.ascontiguousarray(img2)
        flow = np.ascontiguousarray(flow)
        valid = np.ascontiguousarray(valid)
        if intrinsic is not None:
            intrinsic= np.array(intrinsic)

        return img1, img2, flow, valid, intrinsic