File size: 7,820 Bytes
5b3b0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# ==============================================================================
# Copyright (c) 2022 The PersFormer Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import os
import random
import logging
import subprocess
import numpy as np

logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s',)

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import DataParallel as DP
from torch.utils.data import Dataset, DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler as DS

from core.raft_stereo import RAFTStereo
from core.raft_stereo_disp import RAFTStereoDisp
from core.raft_stereo_mast3r import RAFTStereoMast3r
from core.raft_stereo_depthany import RAFTStereoDepthAny
from core.raft_stereo_noctx import RAFTStereoNoCTX
from core.raft_stereo_depthfusion import RAFTStereoDepthFusion
from core.raft_stereo_depthbeta import RAFTStereoDepthBeta
from core.raft_stereo_depthbeta_nolbp import RAFTStereoDepthBetaNoLBP
from core.raft_stereo_depthmatch import RAFTStereoDepthMatch
from core.raft_stereo_depthbeta_refine import RAFTStereoDepthBetaRefine
from core.raft_stereo_depth_postfusion import RAFTStereoDepthPostFusion
from core.raft_stereo_metric3d import RAFTStereoMetric3D


def setup_distributed(args):
    args.rank = int(os.getenv("RANK"))
    args.local_rank = int(os.getenv("LOCAL_RANK"))
    args.world_size = int(os.getenv("WORLD_SIZE"))
    # print("-"*10, "local_rank: {}, world_size:{}".format(args.local_rank, args.world_size),
    #      " - {}, {}".format(dist.get_rank(), dist.get_world_size()))  # they result in the same value
    dist.init_process_group(backend='nccl')
    torch.cuda.set_device(args.local_rank)
    torch.set_printoptions(precision=10)

def ddp_init(args):
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) >= 1

    if args.distributed:
        setup_distributed(args)

    # deterministic
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.manual_seed(args.local_rank)
    np.random.seed(args.local_rank)
    random.seed(args.local_rank)

    print("complete initialization of local_rank:{}".format(args.local_rank))

def ddp_close():
    dist.destroy_process_group()

def to_python_float(t):
    if hasattr(t, 'item'):
        return t.item()
    else:
        return t[0]

def reduce_tensor(tensor, world_size):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    rt /= world_size
    return rt

def reduce_tensors(*tensors, world_size):
    return [reduce_tensor(tensor, world_size) for tensor in tensors]


def get_loader(dataset, args):
    """
        create dataset from ground-truth
        return a batch sampler based ont the dataset
    """
    if args.distributed:
        if args.local_rank == 0:
            print('use distributed sampler')
        data_sampler = DS(dataset, shuffle=True, drop_last=True)
        data_loader = DataLoader(dataset,
                                batch_size=args.batch_size, 
                                sampler=data_sampler,
                                num_workers=args.num_workers, 
                                pin_memory=True,
                                persistent_workers=True)
    else:
        if args.local_rank == 0:
            print("use default sampler")
        # data_sampler = torch.utils.data.sampler.SubsetRandomSampler(sample_idx)
        # data_loader = DataLoader(transformed_dataset,
        #                         batch_size=args.batch_size, sampler=data_sampler,
        #                         num_workers=args.nworkers, pin_memory=True,
        #                         persistent_workers=True,
        #                         worker_init_fn=seed_worker,
        #                         generator=g)
        train_loader = DataLoader(train_dataset, 
								  batch_size=args.batch_size, 
								  pin_memory=True, shuffle=True, 
                                  num_workers=args.num_workers, 
                                  drop_last=True)
    return data_loader

NODE_RANK    = os.getenv('NODE_RANK', default=0)
LOCAL_RANK   = os.getenv("LOCAL_RANK", default=0)

def get_model_ddp(args):
    if args.model_name.lower() == "raftstereo":
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereo(args))
    elif args.model_name.lower() == "raftstereodisp":
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDisp(args))
    elif args.model_name.lower() == "raftstereomast3r":
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoMast3r(args))
    elif args.model_name.lower() == "raftstereodepthany":
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthAny(args))
    elif args.model_name.lower() == "raftstereodepthfusion":
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthFusion(args))
    elif args.model_name.lower() == "RAFTStereoDepthBeta".lower():
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthBeta(args))
    elif args.model_name.lower() == "RAFTStereoDepthBetaNoLBP".lower():
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthBetaNoLBP(args))
    elif args.model_name.lower() == "RAFTStereoDepthMatch".lower():
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthMatch(args))
    elif args.model_name.lower() == "RAFTStereoDepthBetaRefine".lower():
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthBetaRefine(args))
    elif args.model_name.lower() == "RAFTStereoDepthPostFusion".lower():
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoDepthPostFusion(args))
    elif args.model_name.lower() == "RAFTStereoMetric3D".lower():
        model = nn.SyncBatchNorm.convert_sync_batchnorm(RAFTStereoMetric3D(args))
    else :
        raise Exception("No such model: {}".format(args.model_name))
    
    device = torch.device("cuda", args.local_rank)
    model  = model.to(device)

    if args.restore_ckpt is not None:
        assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(".tar")
        if args.local_rank==0 :
            logging.info("Loading checkpoint from {} ...".format(args.restore_ckpt))
        checkpoint = torch.load(args.restore_ckpt)
        new_state_dict = {}
        for key, value in checkpoint.items():
            new_key = key.replace('module.', '')  # 去掉 'module.' 前缀
            # if key.find("refinement.conf_estimate") != -1:
            #     continue
            new_state_dict[new_key] = value
        # model.load_state_dict(new_state_dict, strict=True)
        model.load_state_dict(new_state_dict, strict=False)
        if args.local_rank==0 :
            logging.info(f"Done loading checkpoint")
            
    dist.barrier()

    # DDP setting
    if args.distributed:
        model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, 
                    find_unused_parameters=True)
    else:
        model = DP(RAFTStereo(args))
    return model