File size: 8,616 Bytes
5b3b0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import numpy as np
from PIL import Image
from os.path import *
import re
import json
import imageio
import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)

TAG_CHAR = np.array([202021.25], np.float32)

def readFlow(fn):
    """ Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy

    # WARNING: this will work on little-endian architectures (eg Intel x86) only!
    # print 'fn = %s'%(fn)
    with open(fn, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print('Magic number incorrect. Invalid .flo file')
            return None
        else:
            w = np.fromfile(f, np.int32, count=1)
            h = np.fromfile(f, np.int32, count=1)
            # print 'Reading %d x %d flo file\n' % (w, h)
            data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
            # Reshape data into 3D array (columns, rows, bands)
            # The reshape here is for visualization, the original code is (w,h,2)
            return np.resize(data, (int(h), int(w), 2))

def readPFM(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header == b'PF':
        color = True
    elif header == b'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
    if dim_match:
        width, height = map(int, dim_match.groups())
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().rstrip())
    if scale < 0: # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>' # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data

def writePFM(file, array):
    import os
    assert type(file) is str and type(array) is np.ndarray and \
           os.path.splitext(file)[1] == ".pfm"
    with open(file, 'wb') as f:
        H, W = array.shape
        headers = ["Pf\n", f"{W} {H}\n", "-1\n"]
        for header in headers:
            f.write(str.encode(header))
        array = np.flip(array, axis=0).astype(np.float32)
        f.write(array.tobytes())



def writeFlow(filename,uv,v=None):
    """ Write optical flow to file.
    
    If v is None, uv is assumed to contain both u and v channels,
    stacked in depth.
    Original code by Deqing Sun, adapted from Daniel Scharstein.
    """
    nBands = 2

    if v is None:
        assert(uv.ndim == 3)
        assert(uv.shape[2] == 2)
        u = uv[:,:,0]
        v = uv[:,:,1]
    else:
        u = uv

    assert(u.shape == v.shape)
    height,width = u.shape
    f = open(filename,'wb')
    # write the header
    f.write(TAG_CHAR)
    np.array(width).astype(np.int32).tofile(f)
    np.array(height).astype(np.int32).tofile(f)
    # arrange into matrix form
    tmp = np.zeros((height, width*nBands))
    tmp[:,np.arange(width)*2] = u
    tmp[:,np.arange(width)*2 + 1] = v
    tmp.astype(np.float32).tofile(f)
    f.close()


def readFlowKITTI(filename):
    flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR)
    flow = flow[:,:,::-1].astype(np.float32)
    flow, valid = flow[:, :, :2], flow[:, :, 2]
    flow = (flow - 2**15) / 64.0
    return flow, valid

def readDispKITTI(filename):
    disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
    valid = disp > 0.0
    return disp, valid

def writeDispKITTI(filename, disp):
    disp = np.round(disp * 256).astype(np.uint16)
    # skimage.io.imsave(filename, disp)
    cv2.imwrite(filename, disp)

def readDispCRES(filename):
    try:
        disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH).astype(np.float32) / 32.0
        valid = disp > 0.0
        return disp, valid
    except Exception as err:
        raise(Exception(err, "Something wrong with {}".format(filename), os.getcwd()))

def writeDispCRES(filename, disp):
    disp = np.round(disp * 32).astype(np.uint16)
    # skimage.io.imsave(filename, disp)
    cv2.imwrite(filename, disp)

def readDispNerfS(filename):
    disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH).astype(np.float32) / 64.0
    
    match = re.search(r"(.*?/Q/)", filename)
    if match:
        prefix = match.group(1)  # prefix
        suffix = os.path.basename(filename)  # file name
        # AO path, aka confidence
        ao_path = f"{prefix}AO/{suffix}"
        # print("AO图路径:", ao_path)
    else:
        raise Exception("corrupted path for NerfStereo: {}".format(filename))
    valid = cv2.imread(ao_path, cv2.IMREAD_ANYDEPTH).astype(np.float32) / 65535
    return disp, valid

def writeDispNerfS(filename, disp):
    disp = np.round(disp * 64).astype(np.uint16)
    # skimage.io.imsave(filename, disp)
    cv2.imwrite(filename, disp)

def readDispBooster(file_name):
    disp = np.load(file_name, encoding='bytes', allow_pickle=True)
    # mask_00  = os.path.join(os.path.split(file_name)[0], 'mask_00.png')
    mask_cat_path = os.path.join(os.path.split(file_name)[0], 'mask_cat.png')
    mask_cat = cv2.imread(mask_cat_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
    valid = mask_cat
    return disp, valid

def writeDispBooster(filename, disp):
    # disp = np.round(disp).astype(np.uint16)
    # # skimage.io.imsave(filename, disp)
    # filename = filename.replace(".npy", ".jpg")
    # cv2.imwrite(filename, disp)
    np.save(filename, disp)

# Method taken from /n/fs/raft-depth/RAFT-Stereo/datasets/SintelStereo/sdk/python/sintel_io.py
def readDispSintelStereo(file_name):
    a = np.array(Image.open(file_name))
    d_r, d_g, d_b = np.split(a, axis=2, indices_or_sections=3)
    disp = (d_r * 4 + d_g / (2**6) + d_b / (2**14))[..., 0]
    mask = np.array(Image.open(file_name.replace('disparities', 'occlusions')))
    valid = ((mask == 0) & (disp > 0))
    return disp, valid

# Method taken from https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt
def readDispFallingThings(file_name):
    a = np.array(Image.open(file_name))
    with open('/'.join(file_name.split('/')[:-1] + ['_camera_settings.json']), 'r') as f:
        intrinsics = json.load(f)
    fx = intrinsics['camera_settings'][0]['intrinsic_settings']['fx']
    disp = (fx * 6.0 * 100) / a.astype(np.float32)
    valid = disp > 0
    return disp, valid

# Method taken from https://github.com/castacks/tartanair_tools/blob/master/data_type.md
def readDispTartanAir(file_name):
    depth = np.load(file_name)
    disp = 80.0 / depth
    valid = disp > 0
    return disp, valid


def readDispMiddlebury(file_name):
    if basename(file_name) == 'disp0GT.pfm':
        disp = readPFM(file_name).astype(np.float32)
        assert len(disp.shape) == 2
        nocc_pix = file_name.replace('disp0GT.pfm', 'mask0nocc.png')
        assert exists(nocc_pix)
        nocc_pix = imageio.imread(nocc_pix) == 255
        assert np.any(nocc_pix)
        return disp, nocc_pix
    elif basename(file_name) == 'disp0.pfm':
        disp = readPFM(file_name).astype(np.float32)
        valid = disp < 1e3
        return disp, valid

def writeDispMiddlebury(file_name, disp):
    writePFM(file_name, disp)

def writeFlowKITTI(filename, uv):
    uv = 64.0 * uv + 2**15
    valid = np.ones([uv.shape[0], uv.shape[1], 1])
    uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
    cv2.imwrite(filename, uv[..., ::-1])
    

def read_gen(file_name, pil=False):
    ext = splitext(file_name)[-1]
    if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
        return Image.open(file_name)
    elif ext == '.bin' or ext == '.raw':
        return np.load(file_name)
    elif ext == '.flo':
        return readFlow(file_name).astype(np.float32)
    elif ext == '.pfm':
        flow = readPFM(file_name).astype(np.float32)
        if len(flow.shape) == 2:
            return flow
        else:
            return flow[:, :, :-1]
    return []

def write_gen(file_name, disp, pil=False):
    ext = splitext(file_name)[-1]
    if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
        raise Exception("no support for {} file".format(ext))
    elif ext == '.bin' or ext == '.raw':
        np.save(disp, file_name)
    elif ext == '.flo':
        writeFlow(file_name, disp)
    elif ext == '.pfm':
        writePFM(file_name, disp)
    else:
        raise Exception("no support for {} file".format(ext))