File size: 12,013 Bytes
5b3b0f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
import sys
import time
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from PIL import Image
import frame_utils
import vis
def get_pos(H,W,disp=None,slant="slant",slant_norm=False,patch_size=None,device=None):
if slant=="slant":
u,v = torch.arange(W,device=device), torch.arange(H,device=device)
grid_u, grid_v = torch.meshgrid(u, v, indexing="xy")
if slant_norm:
grid_u = grid_u/W
grid_v = grid_v/H
elif slant=="slant_local":
assert H%patch_size==0 and W%patch_size==0
if not slant_norm:
u = torch.arange(-patch_size/2+0.5, patch_size/2-0.5 + 1, step=1, device=device)
v = torch.arange(-patch_size/2+0.5, patch_size/2-0.5 + 1, step=1, device=device)
else:
# restrict into (-1,1)
u = torch.arange(-1+1/patch_size, 1, step=2/patch_size, device=device)
v = torch.arange(-1+1/patch_size, 1, step=2/patch_size, device=device)
# print(u,v,sep="\r\n")
u = u.tile((W//patch_size))
v = v.tile((H//patch_size))
grid_u, grid_v = torch.meshgrid(u, v, indexing="xy")
# print(grid_u.shape, grid_v.shape)
# print(grid_u[0:2,:10], grid_v[0:2, :10], sep="\r\n")
grid_u = grid_u.view((1,1,H,W))
grid_v = grid_v.view((1,1,H,W))
if disp is not None:
pos = torch.cat([grid_u,grid_v,disp],dim=1)
else:
pos = torch.cat([grid_u,grid_v],dim=1)
return pos.float()
def convert2patch(data, patch_size, div_last=False):
"""
data: B,C,H,W;
"""
B,C,H,W = data.shape
assert H%patch_size==0 and W%patch_size==0
patch_data = F.unfold(data, kernel_size=patch_size, dilation=1, padding=0, stride=patch_size)
patch_data = patch_data.view((-1,C,patch_size*patch_size,H//patch_size,W//patch_size))
if div_last:
patch_data[:,-1] /= patch_size
return patch_data
def intra_dist4patch(patch_data, patch_size):
"""
patch_data: B,C,patch_size*patch_size,H,W
"""
src = patch_data.unsqueeze(3).tile((1,1,1,patch_size*patch_size,1,1))
tar = patch_data.unsqueeze(2).tile((1,1,patch_size*patch_size,1,1,1))
dist = torch.sqrt(torch.square(src-tar).sum(dim=1))
return dist
def get_adjacent_matrix(dist,patch_size,thold=3):
connect = (dist<thold).float()
max_loop = int(np.ceil(np.log2(patch_size*patch_size)))
for _ in range(max_loop):
connect = torch.einsum('bijhw,bjkhw->bikhw', connect, connect)
connect = (connect>0).float()
connect = (connect>0).sum(dim=2)
return connect
def reduce_noise(patch_coord, mask):
"""
patch_coord: B,C,patch_size*patch_size,H,W;
mask: B,patch_size*patch_size,H,W;
"""
# replace the other clique with center point of the largest clique
center_coord = (patch_coord*mask.unsqueeze(1)).sum(dim=2) / mask.sum(dim=1)
chs_coord = patch_coord*mask.unsqueeze(1) + (~mask.unsqueeze(1)) * center_coord.unsqueeze(2)
# print(mask.shape, coord.shape, patch_coord.shape, chs_coord.shape)
return chs_coord
# def abs2relative(patch_coord):
# """
# patch_coord: B,C,patch_size*patch_size,H,W;
# """
# center_patch_coord = patch_coord.mean(dim=2)
# rel_patch_coord = patch_coord - center_patch_coord.unsqueeze(2)
# return rel_patch_coord, center_patch_coord
def get_plane_lstsq(chs_coord, slant, patch_coord=None):
"""
chs_coord: B,C,patch_size*patch_size,H,W;
mask: B,patch_size*patch_size,H,W;
return:
cab: B,6,H,W; (disparity, a, b, g_uu, g_vv, g_uv)
"""
# "slant": get a*u + b*v - d + c = 0 through least squares
# "slant_local": a*(u-u_p) + b*(b-b_p) - (d-d_p) = 0
B,C,L,H,W = chs_coord.shape
chs_coord = chs_coord.flatten(-2,-1).transpose(-2,-1) # (B,C,H*W,patch_size*patch_size)
u_coord = chs_coord[:,0]
v_coord = chs_coord[:,1]
d_coord = chs_coord[:,2]
A = torch.stack((torch.ones_like(u_coord), u_coord, v_coord,
u_coord*u_coord/2, v_coord*v_coord/2, u_coord*v_coord), dim=3) # (B,H*W,patch_size*patch_size,6)
# print(chs_coord.shape, A.shape, d_coord.shape)
cab = torch.linalg.lstsq(A, d_coord).solution # B,H*W,C
cab = cab.transpose(1,2).view((-1,6,H,W))
# # A(B,N,P,C) X(B,N,C) Y(B,N,P)
# # print("-"*10, A.shape, d_coord.shape, abc.shape)
# left_top = torch.einsum('aijk,aikh->aijh', A.transpose(-1,-2), A) # (B,N,C,C)
# right_top = -torch.einsum('aijk,aikh->aijh', A.transpose(-1,-2), d_coord.unsqueeze(-1)) # (B,N,C,1)
# left_bottom = right_top.transpose(-1,-2) # (B,N,1,C)
# right_bottom = d_coord.square().sum(dim=-1,keepdim=True).unsqueeze(-1) # (B,N,1,1)
# top = torch.cat([left_top,right_top], dim=3)
# bottom = torch.cat([left_bottom,right_bottom], dim=3)
# B = torch.cat([top,bottom], dim=2)
# L, V = torch.linalg.eig(B)
# print(L, V.shape)
return cab
def extract_plane(disp,slant="slant", slant_norm=False, patch_size=4,thold=3,vis=False):
"""
disp: B,1,H,W;
return:
cab: B,6,H,W; (disparity, a, b, g_uu, g_vv, g_uv)
"""
# cluster through nearest search
patch_pos = convert2patch(disp, patch_size=patch_size)
dist = intra_dist4patch(patch_pos, patch_size=patch_size)
connect = get_adjacent_matrix(dist, patch_size=patch_size, thold=thold)
# get the largest clique
mask = connect - torch.amax(connect,dim=1).unsqueeze(1)
mask = mask >= -0.0001
# print((mask==0).sum(), (mask>0.5).sum(), mask.size())
# print(disp[0,0,8:12,0:4], patch_pos[0,0,:,2,0], dist[0,:,:,2,0], connect[0,:,2,0], mask[0,:,2,0], sep="\r\n")
# get the 3d coordinate (u,v,d) of each point
B,_,H,W = disp.shape
coord = get_pos(H,W,disp=disp,slant=slant,slant_norm=slant_norm,patch_size=patch_size)
patch_coord = convert2patch(coord, patch_size=patch_size, div_last=True)
# replace the other clique with center point of the largest clique
chs_coord = reduce_noise(patch_coord, mask)
# print(coord[0,:,400:404,400:404], patch_coord[0,:,:,100,100], chs_coord[0,:,:,100,100], sep="\r\n")
# "slant": get a*u + b*v - d + c = 0 through least squares
# "slant_local": a*(u-u_p) + b*(b-b_p) - (d-d_p) = 0
cab = get_plane_lstsq(chs_coord, slant, patch_coord)
if vis:
return cab, mask
return cab
def predict_disp(cab, uv_coord, patch_size, mul_last=False):
"""
cab: B,6,H,W; (disparity, a, b, g_uu, g_vv, g_uv)
uv_coord: B,2,patch_size*patch_size,H,W;
"""
u_coord = uv_coord[:,0]
v_coord = uv_coord[:,1]
A = torch.stack((torch.ones_like(u_coord), u_coord, v_coord,
u_coord*u_coord/2, v_coord*v_coord/2, u_coord*v_coord), dim=1) # (B,6,patch_size*patch_size,H,W)
d_coord = (A * cab.unsqueeze(dim=2)).sum(dim=1)
if mul_last:
d_coord *= patch_size
# print(d_coord.shape)
return d_coord
def compute_curvature(cab):
"""
cab: B,6,H,W; (disparity, a, b, g_uu, g_vv, g_uv)
"""
B,C,H,W = cab.shape
hessian = torch.stack([cab[0,-3], cab[0,-1], cab[0,-1], cab[0,-2]],dim=-1).reshape(H,W,2,2)
eigen_val, eigen_vec = torch.linalg.eigh(hessian)
Gaussian_cur = eigen_val[...,0] * eigen_val[...,1]
mean_cur = (eigen_val[...,0] + eigen_val[...,1]) / 2
Gaussian_cur = Gaussian_cur.abs()
mean_cur = mean_cur.abs()
Gaussian_cur[Gaussian_cur>0.03] = 0
mean_cur[mean_cur>0.01] = 0
Gaussian_cur = (Gaussian_cur - Gaussian_cur.min()) / (Gaussian_cur.max()-Gaussian_cur.min())
mean_cur = (mean_cur - mean_cur.min()) / (mean_cur.max()-mean_cur.min())
# print(Gaussian_cur[120, 170:180], mean_cur[120, 170:180], cab[0,-3:, 120, 170:180], sep="\r\n")
return Gaussian_cur, mean_cur
if __name__ == '__main__':
# slant = "slant"
slant = "slant_local"
# slant_norm = True
slant_norm = False
patch_size = 4
root = "/horizon-bucket/saturn_v_dev/01_users/chengtang.yao/Sceneflow"
disp_path = root+"/flyingthings3d/disparity/TRAIN/A/0717/left/0006.pfm"
left_path = root+"/flyingthings3d/frames_cleanpass/TRAIN/A/0717/left/0006.png"
sv_path = "./tmp.png"
img0 = np.array(Image.open(left_path))
disp = np.array(frame_utils.readPFM(disp_path))
# disp = np.zeros((20,20))
# disp[9:] = 10
H,W = disp.shape
start_time = time.time()
disp = torch.from_numpy(disp).unsqueeze(0).unsqueeze(0)
img0 = torch.from_numpy(img0).permute((2,0,1)).unsqueeze(0)
# extract planes a*u + b*v - d + c = 0
# (B,6,H,W) ~ [disparity, u_coord, v_coord, g_uu, g_vv, g_uv]
cab, mask = extract_plane(disp,
slant=slant, slant_norm=slant_norm,
patch_size=patch_size, thold=3, vis=True)
# print(cab.shape)
uv_coord = get_pos(H,W, slant=slant, slant_norm=slant_norm, patch_size=patch_size)
patch_uv_coord = convert2patch(uv_coord, patch_size=patch_size)
d_coord = predict_disp(cab, patch_uv_coord, patch_size=patch_size, mul_last=True)
patch_disp = convert2patch(disp, patch_size=patch_size, div_last=True)
rec_disp = F.fold(d_coord.flatten(-2,-1), disp.shape[-2:], kernel_size=patch_size, stride=patch_size).view(1,1,H,W)
rec_mask = F.fold(mask.flatten(-2,-1).float(), disp.shape[-2:], kernel_size=patch_size, stride=patch_size).view(1,1,H,W).bool()
# print(rec_disp.shape, patch_disp.shape, disp.shape[-2:])
# print(disp.shape, img0.shape, patch_pos.shape, dist.shape, connect.shape, mask.shape)
# test_v, test_u = 100,100
# torch.set_printoptions(precision=2)
# print(src[0,:,0,:,test_v, test_u], tar[0,:,0,:,test_v, test_u], patch_pos[0,:,:,test_v, test_u], dist[0,:,:,test_v, test_u], sep="\r\n")
# print(connect[0,:,test_v, test_u], mask[0,:,test_v, test_u], sep="\r\n")
end_time = time.time()
print("cost time: {}".format(end_time-start_time), cab.shape)
disp = disp.squeeze(0).squeeze(0).cpu().data.numpy()
img0 = img0.squeeze(0).permute((1,2,0)).cpu().data.numpy()
patch_disp = patch_disp[0,0,0,...].cpu().data.numpy()
rec_disp = rec_disp[0,0,...].cpu().data.numpy()
rec_mask = rec_mask[0,0,...].cpu().data.numpy()
error_map = np.abs(rec_disp-disp)
color_error_map = vis.colorize_error_map(error_map)
# normals
degree = torch.atan(cab[0,1] / cab[0,2])
# curvatures
Gaussian_cur, mean_cur = compute_curvature(cab)
print("-"*10, Gaussian_cur.min(), Gaussian_cur.max(), Gaussian_cur.mean(), Gaussian_cur.median())
print("-"*10, mean_cur.min(), mean_cur.max(), mean_cur.mean(), mean_cur.median())
atom_dict = [{"img":img0, "title":"Left Image", },
{"img":disp, "title":"GT Disparity", "cmap":'jet', },
{"img":patch_disp, "title":"GT Patch Disparity", "cmap":'jet', },
{"img":rec_disp, "title":"GT recover Disparity", "cmap":'jet', },
{"img":rec_mask, "title":"rec_mask", "cmap": "gray"},
{"img":color_error_map, "title":"color_error_map", },
{"img":degree, "title":"GT ab", "cmap":'jet', },
{"img":cab[0,0], "title":"GT c", "cmap":'jet', },
{"img":Gaussian_cur.abs(), "title":"Gaussian curvature", "cmap":'jet', },
{"img":mean_cur.abs(), "title":"mean curvature", "cmap":'jet', },
]
if slant=="slant_local":
d_p = cab[0,0]
error_map = np.abs(d_p-patch_disp)
color_error_map = vis.colorize_error_map(error_map)
tmp_dict = [{"img":d_p, "title":"GT Disparity of Plane", "cmap":'jet', },
{"img":color_error_map, "title":"color_error_map of Plane", },]
atom_dict += tmp_dict
vis.show_imgs(atom_dict,
sv_img=True, save2where=sv_path, if_inter=False,
fontsize=20, szWidth=10, szHeight=5, group=2) |