File size: 27,219 Bytes
5b3b0f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import os
import re
import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import frame_utils as frame_utils
def show_imgs(param, sv_img=False, save2where=None,
fontsize=20, szWidth=10, szHeight=5, group=3,
if_inter=False, dpi=600):
"""function: visualize the input data
args:
paras: [(img, title, colormap), ... ] or
[{"img":..., "title":..., "cmap":..., "point_x":..., "point_y":..., "point_s":..., "point_c":..., "point_m":..., "colorbar":...}, ... ]
sv_img: whether to save the visualization
fontsize : the size of font in title
szWidth, szHeight: width and height of each subfigure
group: the columns of the whole figure
"""
img_num = len(param)
cols = int(group)
rows = int(np.ceil(img_num/group))
sv_title = ""
color_map = None
plt_par_list = []
# plt.clf()
fig = plt.figure(figsize=(szWidth*cols, szHeight*rows))
for i in np.arange(img_num) :
if len(param[i])<2 :
raise Exception("note, each element should be (img, title, ...)")
if isinstance(param[i], list) or isinstance(param[i], np.ndarray) or isinstance(param[i], tuple) :
name_list = ["img", "title", "cmap", "point_x", "point_y", "point_s", "point_c", "point_m", "point_alpha"]
plt_par = {}
for key_id, ele in enumerate(param[i]) :
plt_par[name_list[key_id]] = ele
elif isinstance(param[i], dict) :
plt_par = param[i]
else :
raise Exception("unrecognized type: {}, only recept element with type list, np.ndarray, tuple or dict".format(type(param[i])))
plt_par_list.append(plt_par)
plt.subplot(rows,cols,i+1)
# plt.subplots_adjust(wspace =0, hspace =0)#调整子图间距
plt.title(plt_par.get("title").replace("\t"," "), fontsize=fontsize)
im = plt.imshow(plt_par.get("img"), cmap=plt_par.get("cmap"), alpha=plt_par.get("alpha"),
vmin=plt_par.get("vmin"), vmax=plt_par.get("vmax"))
if plt_par.get("colorbar") == True :
# plt.colorbar(im, orientation='horizontal', fraction=0.02, pad=0.0004)
plt.colorbar(im, orientation='horizontal')
if plt_par.get("point_x") is not None and plt_par.get("point_y") is not None :
plt.scatter(plt_par.get("point_x"), plt_par.get("point_y"), s=plt_par.get("point_s"), c=plt_par.get("point_c"), marker=plt_par.get("point_m"), alpha=plt_par.get("point_alpha"))
plt.axis("off")
# plt.gca().xaxis.set_major_locator(plt.NullLocator())
# plt.gca().yaxis.set_major_locator(plt.NullLocator())
# plt.subplots_adjust(top=1,bottom=0,left=0,right=1,hspace=0,wspace=0)
# plt.margins(0,0)
fig.subplots_adjust(left=None, bottom=None, right=None, wspace=None, hspace=None)
if sv_img is True :
if i>0 :
sv_title += "-"
sv_title += plt_par.get("title")
if if_inter :
from ipywidgets import Output
output = Output()
display(output)
@output.capture()
def onclick(event):
if event.button == 3 and event.ydata is not None and event.xdata is not None :
print_info = ""
for i in np.arange(img_num) :
img = plt_par_list[i].get("img")
title = plt_par_list[i].get("title")
print_info += "{}:\t({},{})-{}\r\n".format(title, int(np.round(event.ydata)), int(np.round(event.xdata)), img[int(np.round(event.ydata)),int(np.round(event.xdata))])
print(print_info)
cid = fig.canvas.mpl_connect('button_press_event', onclick)
plt.tight_layout()
if sv_img is True and save2where is not None :
plt.savefig(os.path.join(save2where), dpi=dpi)
# plt.show(block=False)
plt.close()
def show_dis(param, sv_img=False, fontsize=20, szWidth=10, szHeight=5, group=3):
"""function: visualize the input data
args:
paras: [([(x,y,label),(x,y,label),...], title), ... ] or
[{"x":...shape(num_type,inter), "y":...shape(num_type,inter), "label":...shape(batch,), "title":...}, ... ]
sv_img: whether to save the visualization
fontsize : the size of font in title
szWidth, szHeight: width and height of each subfigure
group: the columns of the whole figure
"""
fig_num = len(param)
cols = group
rows = np.ceil(fig_num/group)
sv_title = ""
color_map = None
plt.figure(figsize=(szWidth*cols, szHeight*rows))
for i in np.arange(fig_num) :
if len(param[i])<3 :
raise Exception("note, each element should be (x, y, title, ...)")
if isinstance(param[i], list) or isinstance(param[i], np.ndarray) or isinstance(param[i], tuple) :
name_list = ["x", "y", "title", "cmap", "point_x", "point_y", "point_s", "point_c", "point_m"]
plt_par = {}
for key_id, ele in enumerate(param[i]) :
plt_par[name_list[key_id]] = ele
elif isinstance(param[i], dict) :
plt_par = param[i]
else :
raise Exception("unrecognized type: {}, only recept element with type list, np.ndarray, tuple or dict".format(type(param[i])))
plt.subplot(rows,cols,i+1)
plt.title(plt_par.get("title"), fontsize=fontsize)
plt.bar(plt_par.get("x"), plt_par.get("y"), color=plt_par.get("cmap"))
# plt.legend()
if plt_par.get("point_x") is not None and plt_par.get("point_y") is not None :
plt.scatter(plt_par.get("point_x"), plt_par.get("point_y"), s=plt_par.get("point_s"), c=plt_par.get("point_c"), marker=plt_par.get("point_m"))
# plt.axis("off")
if sv_img is True :
if i>0 :
sv_title += "-"
sv_title += plt_par.get("title")
if sv_img is True :
plt.savefig(os.path.join(args.save2where,sv_title+".png"))
# plt.show(block=False)
def compute_confidence(movement_cur, movement_pre):
# mask_forward = ((movement_cur<-1) & (movement_cur>=movement_pre-3)) | (movement_cur>=-1)
mask_forward = np.ones_like(movement_cur)
mask_direction = ((np.abs(movement_cur)>1) & (np.abs(movement_pre)>1) & (movement_cur*movement_pre>0)) | (np.abs(movement_cur)<=1) | (np.abs(movement_pre)<=1)
return mask_forward * mask_direction
class Visualizer:
def __init__(self, root, sv_root, dataset=None, scratch=True, args=None, logger=None):
self.root = root.rstrip("/")
self.sv_root = sv_root.rstrip("/")
self.dataset = dataset
self.scratch = scratch
self.args = args
tmp_dir = self.args.dataset.lower()
self.sv_root = self.sv_root if self.sv_root[-(1+len(tmp_dir)):]=="/"+tmp_dir \
else os.path.join(self.sv_root, tmp_dir)
self.vis_root = os.path.join(os.path.dirname(self.sv_root), "analysis", tmp_dir)
self.my_print = print if logger is None else logger.info
self.my_print("saving prediction to {}, visualization to {}".format(self.sv_root, self.vis_root))
def save_pred_vis(self, flow_pr, imageGT_file):
assert self.root in imageGT_file, "{} not in {}".format(self.root, imageGT_file)
# create saving path, /xxx/disp0GT.pfm -> /xxx/disp0GT-pred.pfm
sv_path = imageGT_file.replace(self.root, self.sv_root)
pre,lat = os.path.splitext(sv_path)
sv_path = pre + "-pred" + lat
if not self.scratch and os.path.exists(sv_path):
self.my_print("{} exists".format(sv_path))
return True
# build directory
sv_dir = os.path.dirname(sv_path)
os.makedirs(sv_dir, exist_ok=True)
# write prediction
if self.dataset.lower()=="middlebury" :
frame_utils.writeDispMiddlebury(sv_path, flow_pr)
elif self.dataset.lower()=="kitti2015" :
frame_utils.writeDispKITTI(sv_path, flow_pr)
elif self.dataset.lower()=="eth3d" :
frame_utils.write_gen(sv_path, flow_pr)
elif self.dataset.lower()=="booster" :
frame_utils.writeDispBooster(sv_path, flow_pr)
elif self.dataset.lower()=="common":
frame_utils.writeDispKITTI(sv_path, flow_pr)
else:
raise Exception("such daatset is not supported: {}".format(dataset))
return True
def get_xpx(self, key_list):
pattern = re.compile(r'^\d+(\.\d+)?px_list$')
px_keys = [key for key in key_list if pattern.match(key)]
assert len(px_keys) <= 1, f"too many xpx in {key_list} ~ {px_keys}"
if len(px_keys)==0:
return "0px_list"
return px_keys[0]
def get_error_map(self, pr_list, gt_list, stop_idx=-1):
error_map_list = []
colored_error_map_list = []
for idx in np.arange( len(pr_list) ):
if stop_idx>0 and idx>=stop_idx:
break
gt = gt_list[0] if len(gt_list)==1 else gt_list[idx]
error_map = np.abs(pr_list[idx] - gt)
error_map[np.isinf(gt) | np.isnan(gt) | (gt==0)] = 0
error_map_list.append(error_map)
# colored_error_map = colorize_error_map(error_map, ver_hor="hor")
colored_error_map = colorize_error_map(error_map, ver_hor="ver")
colored_error_map_list.append(colored_error_map)
return error_map_list, colored_error_map_list
def get_imp_map(self, error_map_list, stop_idx=-1):
imp_map_list = []
colored_imp_map_list = []
for idx in np.arange( len(error_map_list) ):
if stop_idx>0 and idx>=stop_idx:
break
imp_map = np.zeros_like(error_map_list[0]) if idx==0 else error_map_list[idx] - error_map_list[idx-1]
imp_map_list.append(imp_map)
# colored_imp_map = colorize_improvement_map(imp_map, ver_hor="hor")
colored_imp_map = colorize_improvement_map(imp_map, ver_hor="ver")
colored_imp_map_list.append(colored_imp_map)
return imp_map_list, colored_imp_map_list
def get_movement_map(self, pr_list, stop_idx=-1):
move_map_list = []
colored_move_map_list = []
for idx in range(0, len(pr_list)):
if stop_idx>0 and idx>=stop_idx:
break
move_map = np.zeros_like(pr_list[idx]) if idx<1 else pr_list[idx] - pr_list[idx-1]
move_map_list.append(move_map)
# colored_move_map = colorize_improvement_map(move_map, ver_hor="hor")
colored_move_map = colorize_improvement_map(move_map, ver_hor="ver")
colored_move_map_list.append(colored_move_map)
return move_map_list, colored_move_map_list
def get_acceleration_map(self, move_map_list, stop_idx=-1):
# get the difference between movement vector
colored_acc_map_list =[]
for idx in range(0, len(move_map_list)):
if stop_idx>0 and idx>=stop_idx:
break
acc_map = np.zeros_like(move_map_list[idx]) if idx<2 else move_map_list[idx] - move_map_list[idx-1]
# colored_acc_map = colorize_improvement_map(acc_map, ver_hor="hor")
colored_acc_map = colorize_improvement_map(acc_map, ver_hor="ver")
colored_acc_map_list.append(colored_acc_map)
return colored_acc_map_list
def get_mask(self, mask_list, binary_thold, stop_idx=-1):
colored_mask_list = []
mask_binary_list = []
for idx in range(0, len(mask_list)):
if stop_idx>0 and idx>=stop_idx:
break
# colored_mask = colorize_confidence(mask, ver_hor="hor")
colored_mask = colorize_confidence(mask_list[idx], ver_hor="ver")
colored_mask_list.append(colored_mask)
mask_binary = mask_list[idx] < binary_thold
mask_binary_list.append(mask_binary)
return colored_mask_list, mask_binary_list
def analyze(self, dict_list, imageGT_file, in_one_fig=False, group=2):
"""
dict_list:
[{"name": "disp",
"img_list": [...],
"cmap": "jet",
"epe_list": [...],
"xpx_list": [...],
"GT": [tensor],
"stop_idx": 20,
"improvement": False,
"movement": False,
"error_map": True,
"acceleration": False,
"mask": False,
"binary_thold": 0.5},
]
"""
# create saving path
file_name = "-".join(imageGT_file.replace(self.root, "").split("/"))[1:]
pre,lat = os.path.splitext(file_name)
file_name = pre+".png"
sv_path = os.path.join(self.vis_root, file_name)
# build directory
sv_dir = os.path.dirname(sv_path)
os.makedirs(sv_dir, exist_ok=True)
fig_data_list = []
for vis_dict in dict_list :
vis_name = vis_dict.get("name", None)
assert vis_name is not None, "missing 'name' in vis_dict"
GT = vis_dict.get("GT", None)
img_list = vis_dict.get("img_list", [])
cmap = vis_dict.get("cmap", None)
stop_idx = vis_dict.get("stop_idx", -1)
vmin = vis_dict.get("vmin", None)
vmax = vis_dict.get("vmax", None)
colorbar = vis_dict.get("colorbar", False)
epe_list = vis_dict.get("epe_list", None)
xpx_name = self.get_xpx(vis_dict.keys())
xpx_list = vis_dict.get(xpx_name, None)
error_map_req = vis_dict.get("error_map", False)
movement_req = vis_dict.get("movement", False)
improvement_req = vis_dict.get("improvement", False)
acceleration_req = vis_dict.get("acceleration", False)
binary_thold = vis_dict.get("binary_thold", 0.5)
mask_req = vis_dict.get("mask", False)
if img_list is None or len(img_list)==0 :
continue
# get the colored error maps for the prediction sequence
if error_map_req :
error_map_list, colored_error_map_list = self.get_error_map(img_list, GT, stop_idx)
# get the colored improvement map between adjacent iterations,
# the improvement map of the first iteration is empty.
if error_map_req and improvement_req :
imp_map_list, colored_imp_map_list = self.get_imp_map(error_map_list, stop_idx)
# get the movement vector at each step
if movement_req :
move_map_list, colored_move_map_list = self.get_movement_map(img_list, stop_idx)
# get the difference between movement vector
if acceleration_req :
colored_acc_map_list = self.get_acceleration_map(move_map_list, stop_idx)
# get the colorized mask and binary mask
if mask_req :
colored_mask_list, mask_binary_list = self.get_mask(img_list, binary_thold, stop_idx)
cnt = 0
for idx in np.arange( len(img_list) ) :
if stop_idx>0 and idx>=stop_idx:
break
info = ""
if epe_list is not None and len(epe_list) > 0 :
info = ": epe~{:.2f}".format(epe_list[idx]) + ", " + \
"{}~{:.1f}".format(xpx_name[:-5], epe_list[idx]*100)
idx_mark = f"" if len(img_list)==1 else f"-{idx}"
if cmap is None or cmap.find("private") == -1 :
cnt += 1
title = f"{vis_name}" + idx_mark
fig_data_list += [{"img" : img_list[idx],
"title" : title,
"cmap" : cmap,
"vmin" : vmin,
"vmax" : vmax,
"colorbar": colorbar},]
if error_map_req :
cnt += 1
title = f"{vis_name}-Error Map" + idx_mark + info
fig_data_list += [{"img" : colored_error_map_list[idx],
"title": title,
"cmap" : None, },]
if error_map_req and improvement_req :
cnt += 1
title = f"Improvement (err[i]-err[i-1])" + idx_mark
fig_data_list += [{"img" : colored_imp_map_list[idx],
"title": title,
"cmap" : None, },]
if movement_req :
cnt += 1
title = f"Movement (disp[i]-disp[i-1])" + idx_mark
fig_data_list += [{"img" : colored_move_map_list[idx],
"title": title,
"cmap" : None, },]
if acceleration_req :
cnt += 1
title = f"Acceleration (Move[i]-Move[i-1])" + idx_mark
fig_data_list += [{"img" : colored_acc_map_list[idx],
"title": title,
"cmap" : None, },]
if mask_req:
cnt += 1
title = f"Mask" + idx_mark
fig_data_list += [{"img" : colored_mask_list[idx],
"title": title,
"cmap" : None, },]
cnt += 1
title = f"Binary Mask" + idx_mark
fig_data_list += [{"img" : mask_binary_list[idx],
"title": title,
"cmap" : "gray", },]
if not in_one_fig:
tmp_group = cnt // (stop_idx if stop_idx>0 else len(img_list))
H,W = img_list[0].shape
pre,lat = os.path.splitext(sv_path)
tmp_sv_path = pre + f"-sequence-{vis_name}" + lat
show_imgs(fig_data_list,
sv_img=True, save2where=tmp_sv_path, if_inter=False,
fontsize=20, szWidth=np.ceil(W/H)*5, szHeight=5,
group=tmp_group, dpi=300)
fig_data_list = []
if in_one_fig:
show_imgs(fig_data_list,
sv_img=True, save2where=sv_path, if_inter=False,
fontsize=20, szWidth=10, szHeight=5, group=group, dpi=300)
def colorize_error_map(error_map, ver_hor="hor"):
# Define a custom colormap for errors within 10 (shades of red)
num_colors = 10
colors_map = [
(255, 255, 255), # White
(255, 248, 220), # Brown
(255, 192, 203), # Pink
(128, 128, 128), # Gray
(128, 0, 128), # Purple
(64, 224, 208), # Turquoise
(255, 165, 0), # Orange
(255, 255, 0), # Yellow
(0, 128, 0), # Green
(0, 0, 255), # Blue
(255, 0, 0), # Red
]
# Create a blank colored map with the same dimensions as the error map
colored_map = np.zeros((error_map.shape[0], error_map.shape[1], 3), dtype=np.uint8)
# Map error values within 10 to custom colors
for i in range(1, num_colors + 1):
colored_map[(error_map<i) & (error_map>=i-1)] = colors_map[i - 1]
colored_map[error_map>=i] = colors_map[i - 1]
# create corlor bar
font = cv2.FONT_HERSHEY_SIMPLEX
font_color = (0, 0, 0) # Black
if ver_hor=="hor":
bar_size = 15
font_scale = 0.45
font_thickness = 1
color_bar = np.ones((bar_size, error_map.shape[1], 3))*255
step = error_map.shape[1]//(num_colors+1)
for i in range(1+num_colors):
color_bar[bar_size//3:, i*step:(i+1)*step] = colors_map[i]
for i in range(1+num_colors):
x = i * step + step // 8
y = bar_size//3*2
cv2.putText(color_bar, str(i), (x, y), font, font_scale, font_color, font_thickness)
colored_map = np.vstack((colored_map, color_bar))
elif ver_hor=="ver":
bar_size = error_map.shape[1] // 10
font_scale = 0.9
font_thickness = 2
color_bar = np.ones((error_map.shape[0], bar_size, 3))*255
step = error_map.shape[0]//(num_colors+1)
for i in range(1+num_colors):
color_bar[i*step:(i+1)*step, bar_size//3:] = colors_map[i]
for i in range(1+num_colors):
y = i * step + step // 4
x = bar_size//3*2
cv2.putText(color_bar, str(i), (x, y), font, font_scale, font_color, font_thickness)
colored_map = np.hstack((colored_map, color_bar))
return colored_map.astype(np.uint8)
def colorize_confidence(confidence, ver_hor="hor"):
# Define a custom colormap for errors within 10 (shades of red)
colors_map = [
(255, 219, 172), # Navajo White
(241, 194, 125), # Mellow Apricot
(233, 159, 51 ),
(224, 172, 105), # Fawn
(198, 134, 66 ), # Peru
(168, 112, 50 ),
(141, 85 , 36 ), # Russet
(121, 81 , 37 ),
(103, 63 , 27 ),
(53 , 32 , 13 ),
]
num_colors = len(colors_map)
# Create a blank colored map with the same dimensions as the error map
colored_map = np.zeros((confidence.shape[0], confidence.shape[1], 3), dtype=np.uint8)
# Map error values within 10 to custom colors
for i in range(1, num_colors+1):
colored_map[(confidence>=(i-1)/num_colors) & (confidence<i/num_colors)] = colors_map[i-1]
colored_map[confidence>=i/num_colors] = colors_map[i-1]
# create corlor bar
font = cv2.FONT_HERSHEY_SIMPLEX
font_color = (0, 0, 0) # Black
if ver_hor=="hor":
bar_size = 8
font_scale = 0.35
font_thickness = 1
color_bar = np.ones((bar_size, confidence.shape[1], 3))*255
step = confidence.shape[1]//num_colors
for i in range(1,1+num_colors):
color_bar[bar_size//3:, (i-1)*step:i*step] = colors_map[i-1]
for i in range(1+num_colors):
x = i * step
x = x + step // 8 if i<num_colors else x - step // 8
y = bar_size//3*2
cv2.putText(color_bar, "{:.1f}".format(i/num_colors), (x, y),
font, font_scale, font_color, font_thickness)
colored_map = np.vstack((colored_map, color_bar))
elif ver_hor=="ver":
bar_size = confidence.shape[1] // 10
font_scale = 0.25
font_thickness = 1
color_bar = np.ones((confidence.shape[0], bar_size, 3))*255
step = confidence.shape[0]//num_colors
for i in range(1,1+num_colors):
color_bar[(i-1)*step:i*step, bar_size//3:] = colors_map[i-1]
for i in range(1+num_colors):
y = i * step
y = y + step // 4 if i<num_colors else y - step // 4
x = int(bar_size//3*1.5)
cv2.putText(color_bar, "{:.1f}".format(i/num_colors), (x, y),
font, font_scale, font_color, font_thickness)
colored_map = np.hstack((colored_map, color_bar))
return colored_map.astype(np.uint8)
def colorize_improvement_map(improvement_map, ver_hor="hor"):
# Define a custom colormap for errors within 10 (shades of red)
num_colors = 10
colors_map = [
(255, 0, 0), # Red - (--, -7)
(0, 128, 0), # Green - (-7, -5)
(255, 165, 0), # Orange - (-5, -3)
(128, 0, 128), # Purple - (-3, -1)
(255, 192, 203), # Pink - (-1, -0.5)
(255, 255, 255), # White - (-0.5,0.5)
(255, 248, 220), # Brown - (0.5, 1)
(128, 128, 128), # Gray - (1, 3)
(64, 224, 208), # Turquoise - (3, 5)
(255, 255, 0), # Yellow - (5, 7)
(0, 0, 255), # Blue - (7, ++)
]
bound_val = np.array([(-np.inf, -7),
(-7, -5),
(-5, -3),
(-3, -1),
(-1, -0.3),
(-0.3, 0.3),
( 0.3, 1),
( 1, 3),
( 3, 5),
( 5, 7),
( 7, np.inf),])
# Create a blank colored map with the same dimensions as the error map
colored_map = np.zeros((improvement_map.shape[0], improvement_map.shape[1], 3), dtype=np.uint8)
# Map error values to custom colors
for idx in range(0, 1+num_colors):
if idx<=4 :
colored_map[(improvement_map>=bound_val[idx][0]) & \
(improvement_map<bound_val[idx][1])] = colors_map[idx]
elif idx==5 :
colored_map[(improvement_map>=bound_val[idx][0]) & \
(improvement_map<=bound_val[idx][1])] = colors_map[idx]
else :
colored_map[(improvement_map>bound_val[idx][0]) & \
(improvement_map<=bound_val[idx][1])] = colors_map[idx]
# create corlor bar
font = cv2.FONT_HERSHEY_SIMPLEX
font_color = (0, 0, 0) # Black
if ver_hor=="hor":
bar_size = 15
font_scale = 0.45
font_thickness = 1
color_bar = np.ones((bar_size, improvement_map.shape[1], 3))*255
step = improvement_map.shape[1]//(num_colors+1)
for i in range(1+num_colors):
color_bar[bar_size//3:, i*step:(i+1)*step] = colors_map[i]
for i in range(1+num_colors):
x = i * step + step // 8
y = bar_size//3*2
cv2.putText(color_bar, str(bound_val[i][0]), (x, y), font, font_scale, font_color, font_thickness)
colored_map = np.vstack((colored_map, color_bar))
elif ver_hor=="ver":
bar_size = improvement_map.shape[1] // 10
font_scale = 0.9
font_thickness = 2
color_bar = np.ones((improvement_map.shape[0], bar_size, 3))*255
step = improvement_map.shape[0]//(num_colors+1)
for i in range(1+num_colors):
color_bar[i*step:(i+1)*step, bar_size//3:] = colors_map[i]
for i in range(1+num_colors):
y = i * step + step // 4
x = bar_size//3*2
cv2.putText(color_bar, str(bound_val[i][0]), (x, y), font, font_scale, font_color, font_thickness)
colored_map = np.hstack((colored_map, color_bar))
return colored_map.astype(np.uint8) |