Spaces:
Paused
Paused
File size: 11,671 Bytes
83c150d 30b9f33 83c150d 30b9f33 83c150d 30b9f33 83c150d 30b9f33 83c150d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# ============================================================================
# CONTENTFORGE AI - FASTAPI BACKEND
# REST API for multi-modal AI platform
# ============================================================================
from fastapi import FastAPI, HTTPException, Header, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional
import torch
import os
from huggingface_hub import login
import base64
from io import BytesIO
import numpy as np
import wave
import struct
# ============================================================================
# AUTHENTICATION
# ============================================================================
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
print("π Authenticating with HuggingFace...")
login(token=HF_TOKEN)
print("β
Authenticated!\n")
from transformers import (
T5Tokenizer, T5ForConditionalGeneration,
Qwen2VLForConditionalGeneration, Qwen2VLProcessor,
AutoProcessor, MusicgenForConditionalGeneration
)
from peft import PeftModel
from qwen_vl_utils import process_vision_info
from diffusers import StableDiffusionPipeline
from PIL import Image
# ============================================================================
# FASTAPI APP SETUP
# ============================================================================
app = FastAPI(
title="ContentForge AI API",
description="Multi-modal AI API for education and social media content generation",
version="1.0.0"
)
# CORS - Allow requests from your frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production: ["https://yourwebsite.vercel.app"]
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Simple API key authentication (improve this for production!)
API_KEYS = {
"demo_key_123": "Demo User",
"sk_test_456": "Test User",
}
def verify_api_key(x_api_key: str = Header(None)):
"""Verify API key from header"""
if x_api_key not in API_KEYS:
raise HTTPException(status_code=401, detail="Invalid API Key")
return API_KEYS[x_api_key]
# ============================================================================
# LOAD MODELS
# ============================================================================
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"π₯οΈ Using device: {device}")
print("π¦ Loading models...\n")
# 1. T5 Model
print("π Loading T5...")
t5_tokenizer = T5Tokenizer.from_pretrained("Bashaarat1/t5-small-arxiv-summarizer")
t5_model = T5ForConditionalGeneration.from_pretrained(
"Bashaarat1/t5-small-arxiv-summarizer"
).to(device)
t5_model.eval()
print("β
T5 loaded!")
# 2. Qwen VLM
print("π€ Loading Qwen...")
qwen_base = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
device_map="auto",
torch_dtype=torch.bfloat16
)
qwen_model = PeftModel.from_pretrained(
qwen_base,
"Bashaarat1/qwen-finetuned-scienceqa"
)
qwen_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
qwen_model.eval()
print("β
Qwen loaded!")
# 3. MusicGen
print("π΅ Loading MusicGen...")
music_processor = AutoProcessor.from_pretrained("Bashaarat1/fine-tuned-musicgen-small")
music_model = MusicgenForConditionalGeneration.from_pretrained(
"Bashaarat1/fine-tuned-musicgen-small"
).to(device)
music_model.eval()
print("β
MusicGen loaded!")
# 4. Stable Diffusion
print("π¨ Loading Stable Diffusion...")
sd_pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
safety_checker=None
).to(device)
print("β
Stable Diffusion loaded!")
print("\nπ All models loaded! API ready.\n")
# ============================================================================
# REQUEST/RESPONSE MODELS
# ============================================================================
class SummarizeRequest(BaseModel):
text: str
max_length: int = 128
class SummarizeResponse(BaseModel):
summary: str
original_words: int
summary_words: int
class QARequest(BaseModel):
question: str
image_base64: Optional[str] = None
class QAResponse(BaseModel):
answer: str
class ImageRequest(BaseModel):
prompt: str
negative_prompt: str = ""
num_steps: int = 25
class ImageResponse(BaseModel):
image_base64: str
class MusicRequest(BaseModel):
prompt: str
duration: int = 10
class MusicResponse(BaseModel):
audio_base64: str
sampling_rate: int
format: str
# ============================================================================
# HELPER FUNCTIONS
# ============================================================================
def numpy_to_wav(audio_data: np.ndarray, sampling_rate: int) -> bytes:
"""Convert numpy array to WAV format bytes"""
# Normalize audio to -1 to 1 range
audio_data = np.clip(audio_data, -1, 1)
# Convert to 16-bit PCM
audio_int16 = (audio_data * 32767).astype(np.int16)
# Create WAV file in memory
wav_io = BytesIO()
with wave.open(wav_io, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(sampling_rate)
wav_file.writeframes(audio_int16.tobytes())
return wav_io.getvalue()
# ============================================================================
# API ENDPOINTS
# ============================================================================
@app.get("/")
def root():
"""API health check"""
return {
"status": "online",
"message": "ContentForge AI API",
"version": "1.0.0",
"endpoints": [
"/summarize",
"/qa",
"/generate-image",
"/generate-music"
]
}
@app.post("/summarize", response_model=SummarizeResponse)
def summarize(
request: SummarizeRequest,
user: str = Header(None, alias="x-api-key")
):
"""Summarize text using fine-tuned T5"""
verify_api_key(user)
if not request.text.strip():
raise HTTPException(status_code=400, detail="Text cannot be empty")
try:
inputs = t5_tokenizer(
f"summarize: {request.text}",
return_tensors="pt",
max_length=512,
truncation=True
).to(device)
with torch.no_grad():
outputs = t5_model.generate(
**inputs,
max_length=request.max_length,
min_length=30,
num_beams=4,
early_stopping=True
)
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
return SummarizeResponse(
summary=summary,
original_words=len(request.text.split()),
summary_words=len(summary.split())
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/qa", response_model=QAResponse)
def question_answer(
request: QARequest,
user: str = Header(None, alias="x-api-key")
):
"""Answer questions with optional image using Qwen VLM"""
verify_api_key(user)
if not request.question.strip():
raise HTTPException(status_code=400, detail="Question cannot be empty")
try:
image = None
if request.image_base64:
# Decode base64 image
image_data = base64.b64decode(request.image_base64)
image = Image.open(BytesIO(image_data)).convert('RGB')
# Prepare messages
if image is not None:
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": request.question}
]
}]
else:
messages = [{
"role": "user",
"content": [{"type": "text", "text": request.question}]
}]
text_prompt = qwen_processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
if image is not None:
img_inputs, _ = process_vision_info(messages)
inputs = qwen_processor(
text=[text_prompt],
images=img_inputs,
return_tensors="pt"
).to(device)
else:
inputs = qwen_processor(
text=[text_prompt],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = qwen_model.generate(**inputs, max_new_tokens=200)
answer = qwen_processor.batch_decode(
outputs[:, inputs.input_ids.size(1):],
skip_special_tokens=True
)[0].strip()
return QAResponse(answer=answer)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate-image", response_model=ImageResponse)
def generate_image(
request: ImageRequest,
user: str = Header(None, alias="x-api-key")
):
"""Generate image using Stable Diffusion"""
verify_api_key(user)
if not request.prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
try:
with torch.no_grad():
image = sd_pipe(
request.prompt,
negative_prompt=request.negative_prompt,
num_inference_steps=request.num_steps,
guidance_scale=7.5
).images[0]
# Convert image to base64
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return ImageResponse(image_base64=img_str)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate-music", response_model=MusicResponse)
def generate_music(
request: MusicRequest,
user: str = Header(None, alias="x-api-key")
):
"""Generate music using MusicGen"""
verify_api_key(user)
if not request.prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
try:
inputs = music_processor(
text=[request.prompt],
padding=True,
return_tensors="pt"
).to(device)
max_tokens = int(request.duration * 50)
with torch.no_grad():
audio_values = music_model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=True
)
sampling_rate = music_model.config.audio_encoder.sampling_rate
audio_data = audio_values[0, 0].cpu().numpy()
# Convert to WAV format
wav_bytes = numpy_to_wav(audio_data, sampling_rate)
# Encode to base64
audio_str = base64.b64encode(wav_bytes).decode()
return MusicResponse(
audio_base64=audio_str,
sampling_rate=sampling_rate,
format="wav"
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============================================================================
# RUN SERVER
# ============================================================================
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |