Spaces:
Runtime error
Runtime error
File size: 14,910 Bytes
90a59c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""
RunPod Manager - High-level management for RunPod instances
Provides higher-level functions for managing RunPod instances including
deployment, monitoring, and SSH access.
"""
import paramiko
import time
from typing import Optional, Dict, List
from dataclasses import dataclass, field
from runpod_client import RunPodClient, PodInfo
@dataclass
class DeploymentConfig:
"""Configuration for RunPod deployment."""
name: str = "aura-training-pod"
gpu_type: str = "NVIDIA A100 80GB PCIe"
gpu_count: int = 1
storage_gb: int = 100
image: str = "runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04"
ports: str = "8888/http,22/tcp,7860/http" # Jupyter, SSH, Gradio
@dataclass
class TrainingConfig:
"""Configuration for model training on RunPod."""
model_name: str = "Qwen/Qwen2.5-7B-Instruct"
lora_rank: int = 8
learning_rate: float = 2e-4
num_epochs: int = 3
batch_size: int = 4
gradient_accumulation_steps: int = 4
use_4bit: bool = True
max_length: int = 2048
class RunPodManager:
"""Manager for RunPod instances with deployment and monitoring"""
def __init__(self, api_key: Optional[str] = None):
self.client = RunPodClient(api_key)
def deploy_training_pod(
self,
name: str,
gpu_type: str = "NVIDIA A100 80GB PCIe",
gpu_count: int = 1,
storage_gb: int = 100
) -> Optional[str]:
"""Deploy a pod configured for model training"""
# Use PyTorch image with CUDA support
image = "runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04"
print(f"Deploying training pod '{name}'...")
print(f" GPU: {gpu_type} x{gpu_count}")
print(f" Storage: {storage_gb}GB")
pod_id = self.client.create_pod(
name=name,
image_name=image,
gpu_type_id=gpu_type,
gpu_count=gpu_count,
volume_in_gb=storage_gb,
container_disk_in_gb=50,
ports="8888/http,22/tcp,7860/http" # Jupyter, SSH, Gradio
)
if pod_id:
print(f"Pod created: {pod_id}")
print("Waiting for pod to start...")
time.sleep(10) # Give it time to start
return pod_id
def get_pod_status(self, pod_id: str) -> Optional[Dict]:
"""Get current status of a pod"""
pods = self.client.list_pods()
for pod in pods:
if pod.id == pod_id:
return {
"id": pod.id,
"name": pod.name,
"status": pod.status,
"gpu_type": pod.gpu_type,
"cost_per_hour": pod.cost_per_hour
}
return None
def list_all_pods(self) -> List[PodInfo]:
"""List all pods"""
return self.client.list_pods()
def stop_pod(self, pod_id: str) -> bool:
"""Stop a running pod"""
print(f"Stopping pod {pod_id}...")
return self.client.stop_pod(pod_id)
def terminate_pod(self, pod_id: str) -> bool:
"""Terminate a pod"""
print(f"Terminating pod {pod_id}...")
return self.client.terminate_pod(pod_id)
def get_ssh_connection(
self,
pod_ip: str,
username: str = "root",
key_file: Optional[str] = None,
password: Optional[str] = None
) -> Optional[paramiko.SSHClient]:
"""Get SSH connection to a pod"""
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
try:
if key_file:
ssh.connect(
pod_ip,
username=username,
key_filename=key_file,
timeout=10
)
elif password:
ssh.connect(
pod_ip,
username=username,
password=password,
timeout=10
)
else:
print("Either key_file or password must be provided")
return None
return ssh
except Exception as e:
print(f"SSH connection failed: {e}")
return None
def execute_command(
self,
ssh: paramiko.SSHClient,
command: str
) -> tuple[str, str]:
"""Execute a command via SSH"""
stdin, stdout, stderr = ssh.exec_command(command)
return stdout.read().decode(), stderr.read().decode()
def upload_file(
self,
ssh: paramiko.SSHClient,
local_path: str,
remote_path: str
) -> bool:
"""Upload a file to the pod"""
try:
sftp = ssh.open_sftp()
sftp.put(local_path, remote_path)
sftp.close()
return True
except Exception as e:
print(f"File upload failed: {e}")
return False
def download_file(
self,
ssh: paramiko.SSHClient,
remote_path: str,
local_path: str
) -> bool:
"""Download a file from the pod"""
try:
sftp = ssh.open_sftp()
sftp.get(remote_path, local_path)
sftp.close()
return True
except Exception as e:
print(f"File download failed: {e}")
return False
def setup_training_environment(
self,
ssh: paramiko.SSHClient,
requirements_file: Optional[str] = None
) -> bool:
"""Setup the training environment on a pod"""
print("Setting up training environment...")
# Update pip
print("Updating pip...")
stdout, stderr = self.execute_command(ssh, "pip install --upgrade pip")
if requirements_file:
# Upload requirements file
print("Uploading requirements...")
if not self.upload_file(ssh, requirements_file, "/tmp/requirements.txt"):
return False
# Install requirements
print("Installing requirements...")
stdout, stderr = self.execute_command(
ssh,
"pip install -r /tmp/requirements.txt"
)
if stderr and "error" in stderr.lower():
print(f"Installation errors: {stderr}")
return False
print("Environment setup complete!")
return True
def monitor_training(
self,
ssh: paramiko.SSHClient,
log_file: str = "/workspace/training.log",
interval: int = 30
):
"""Monitor training progress"""
print(f"Monitoring training log: {log_file}")
print(f"Checking every {interval} seconds...")
print("Press Ctrl+C to stop monitoring\n")
last_line_count = 0
try:
while True:
# Get log file content
stdout, stderr = self.execute_command(
ssh,
f"cat {log_file} 2>/dev/null || echo 'Log file not found'"
)
lines = stdout.strip().split('\n')
new_lines = lines[last_line_count:]
if new_lines and new_lines[0] != 'Log file not found':
for line in new_lines:
print(line)
last_line_count = len(lines)
time.sleep(interval)
except KeyboardInterrupt:
print("\nStopped monitoring")
def get_available_gpus(self) -> List[Dict]:
"""Get list of available GPU types"""
return self.client.get_gpu_types()
def estimate_cost(
self,
gpu_type: str,
gpu_count: int,
hours: float
) -> Optional[float]:
"""Estimate cost for a training job"""
pods = self.client.list_pods()
# Find cost per hour for this GPU type
for pod in pods:
if pod.gpu_type == gpu_type and pod.gpu_count == gpu_count:
total_cost = pod.cost_per_hour * hours
return total_cost
return None
def run_training_on_pod(
self,
pod_id: str,
training_data: List[Dict],
model_name: str,
lora_config: Dict,
training_config: Dict
) -> bool:
"""Run training on RunPod pod instead of locally"""
import json
import tempfile
print(f"Starting remote training on pod {pod_id}...")
# 1. Get pod details to find SSH info
pod_details = self.client.get_pod_details(pod_id)
if not pod_details:
print("Error: Could not get pod details")
return False
# Extract SSH connection info
runtime = pod_details.get("runtime")
if not runtime or not runtime.get("ports"):
print("Error: Pod runtime not available. Pod may still be starting.")
return False
# Find SSH port
ssh_port = None
ssh_ip = None
for port in runtime["ports"]:
if port.get("privatePort") == 22:
ssh_ip = port.get("ip")
ssh_port = port.get("publicPort")
break
if not ssh_ip or not ssh_port:
print("Error: SSH port not found in pod details")
return False
print(f"SSH Connection: {ssh_ip}:{ssh_port}")
# 2. Save training data to temp file
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(training_data, f)
data_file = f.name
# 3. Create training script
training_script = f"""
import json
import sys
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
from datasets import Dataset
import torch
print("Loading training data...")
with open('/workspace/training_data.json', 'r') as f:
data = json.load(f)
print(f"Loaded {{len(data)}} training examples")
print("Loading model: {model_name}")
model = AutoModelForCausalLM.from_pretrained(
"{model_name}",
load_in_4bit=True,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("{model_name}")
tokenizer.pad_token = tokenizer.eos_token
print("Preparing model for training...")
model = prepare_model_for_kbit_training(model)
lora_config = LoraConfig(
r={lora_config.get('r', 16)},
lora_alpha={lora_config.get('lora_alpha', 32)},
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
print("Preparing dataset...")
def format_data(example):
text = f"###Instruction: {{example['instruction']}}\\n###Response: {{example['output']}}"
return tokenizer(text, truncation=True, max_length=2048, padding="max_length")
dataset = Dataset.from_list(data)
dataset = dataset.map(format_data, batched=False)
training_args = TrainingArguments(
output_dir="/workspace/outputs",
num_train_epochs={training_config.get('num_epochs', 3)},
per_device_train_batch_size={training_config.get('batch_size', 1)},
gradient_accumulation_steps={training_config.get('gradient_accumulation_steps', 16)},
learning_rate={training_config.get('learning_rate', 2e-4)},
logging_steps=10,
save_steps=100,
save_total_limit=2,
fp16=True,
report_to="none"
)
print("Starting training...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset
)
trainer.train()
print("Saving model...")
model.save_pretrained("/workspace/final_model")
tokenizer.save_pretrained("/workspace/final_model")
print("Training complete!")
"""
# Save script to temp file
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
f.write(training_script)
script_file = f.name
print("Connecting to pod via SSH...")
# Get path to SSH key
import os
key_path = os.path.join(os.getcwd(), ".ssh", "runpod_key")
if not os.path.exists(key_path):
print(f"Error: SSH key not found at {key_path}")
print("Run: ssh-keygen -t ed25519 -f .ssh/runpod_key -N ''")
print("Then add the public key to RunPod: https://www.runpod.io/console/user/settings")
return False
# Get SSH connection (RunPod uses root user by default)
ssh = self.get_ssh_connection(
pod_ip=ssh_ip,
username="root",
password=None,
key_file=key_path
)
if not ssh:
print("Error: Could not establish SSH connection")
print(f"Tried using key: {key_path}")
print("Verify the public key is added to RunPod: https://www.runpod.io/console/user/settings")
return False
try:
# Upload training data
print("Uploading training data...")
if not self.upload_file(ssh, data_file, "/workspace/training_data.json"):
return False
# Upload training script
print("Uploading training script...")
if not self.upload_file(ssh, script_file, "/workspace/train.py"):
return False
# Install required packages
print("Installing required packages...")
stdout, stderr = self.execute_command(
ssh,
"pip install transformers peft datasets accelerate bitsandbytes"
)
# Execute training
print("Starting training on pod...")
print("Training will run in the background on the pod.")
print("You can monitor progress by checking the pod's logs.")
# Run training in background with nohup
stdout, stderr = self.execute_command(
ssh,
"nohup python /workspace/train.py > /workspace/training.log 2>&1 &"
)
print("\nTraining initiated successfully!")
print("Training data uploaded to: /workspace/training_data.json")
print("Training script uploaded to: /workspace/train.py")
print("Training log available at: /workspace/training.log")
print("\nTo monitor progress, you can:")
print(f" 1. SSH to pod: ssh root@{ssh_ip} -p {ssh_port}")
print(" 2. View logs: tail -f /workspace/training.log")
return True
except Exception as e:
print(f"Error during remote training setup: {e}")
return False
finally:
ssh.close()
# Clean up temp files
import os
try:
os.unlink(data_file)
os.unlink(script_file)
except:
pass
|