File size: 11,576 Bytes
f2491fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# πŸš€ Phase 1 Implementation Plan - Research Features

## Quick Wins: Build These First (2-3 days)

### Priority 1: RAG Pipeline Visualization ⭐⭐⭐
**Why:** Shows research credibility, transparency, visual appeal
**Effort:** Medium
**Impact:** High

#### Implementation Steps:

1. **Backend: Track RAG stages** (`api/rag_tracker.py`)
```python
class RAGTracker:
    def __init__(self):
        self.stages = []
    
    def track_query_encoding(self, query, embedding):
        self.stages.append({
            "stage": "encoding",
            "query": query,
            "embedding_preview": embedding[:10],  # First 10 dims
            "timestamp": time.time()
        })
    
    def track_retrieval(self, documents, scores):
        self.stages.append({
            "stage": "retrieval",
            "num_docs": len(documents),
            "top_scores": scores[:5],
            "documents": [{"text": d[:100], "score": s} 
                         for d, s in zip(documents[:5], scores[:5])]
        })
    
    def track_generation(self, context, response):
        self.stages.append({
            "stage": "generation",
            "context_length": len(context),
            "response_length": len(response),
            "attribution": self.extract_citations(response)
        })
```

2. **Frontend: RAG Pipeline Viewer** (add to `index.html`)
```html
<div class="rag-pipeline" id="rag-pipeline">
  <div class="stage" data-stage="encoding">
    <div class="stage-icon">πŸ”</div>
    <div class="stage-title">Query Encoding</div>
    <div class="stage-details">
      <div class="embedding-preview"></div>
    </div>
  </div>
  
  <div class="stage" data-stage="retrieval">
    <div class="stage-icon">πŸ“š</div>
    <div class="stage-title">Document Retrieval</div>
    <div class="retrieved-docs"></div>
  </div>
  
  <div class="stage" data-stage="generation">
    <div class="stage-icon">✍️</div>
    <div class="stage-title">Generation</div>
    <div class="citations"></div>
  </div>
</div>
```

3. **Styling: Research Lab Theme**
```css
.rag-pipeline {
  background: #1e1e1e;
  color: #d4d4d4;
  font-family: 'Fira Code', monospace;
  padding: 20px;
  border-radius: 8px;
  margin: 20px 0;
}

.stage {
  border-left: 3px solid #007acc;
  padding: 15px;
  margin: 10px 0;
  transition: all 0.3s;
}

.stage.active {
  border-left-color: #4ec9b0;
  background: #2d2d2d;
}

.embedding-preview {
  font-family: 'Courier New', monospace;
  background: #0e0e0e;
  padding: 10px;
  border-radius: 4px;
  overflow-x: auto;
}
```

---

### Priority 2: Attention Visualization ⭐⭐
**Why:** Shows interpretability, looks impressive, educational
**Effort:** Medium-High
**Impact:** Very High (visually stunning)

#### Implementation:

1. **Mock attention data in demo mode**
```python
def generate_attention_heatmap(query: str, response: str):
    """Generate synthetic attention weights for demo."""
    query_tokens = query.split()
    response_tokens = response.split()[:20]  # First 20 tokens
    
    # Simulate attention: query tokens attend to relevant response tokens
    attention = np.random.rand(len(query_tokens), len(response_tokens))
    
    # Add some structure (diagonal-ish for realistic look)
    for i in range(len(query_tokens)):
        attention[i, i:i+3] *= 2  # Boost nearby tokens
    
    attention = softmax(attention, axis=1)
    
    return {
        "query_tokens": query_tokens,
        "response_tokens": response_tokens,
        "attention_weights": attention.tolist()
    }
```

2. **Interactive heatmap with Plotly or D3.js**
```javascript
function renderAttentionHeatmap(data) {
  const trace = {
    x: data.response_tokens,
    y: data.query_tokens,
    z: data.attention_weights,
    type: 'heatmap',
    colorscale: 'Viridis',
    hoverongaps: false
  };
  
  const layout = {
    title: 'Attention Pattern: Query β†’ Response',
    xaxis: { title: 'Response Tokens' },
    yaxis: { title: 'Query Tokens' },
    paper_bgcolor: '#1e1e1e',
    plot_bgcolor: '#1e1e1e',
    font: { color: '#d4d4d4' }
  };
  
  Plotly.newPlot('attention-heatmap', [trace], layout);
}
```

---

### Priority 3: Paper Citation System ⭐⭐⭐
**Why:** Academic credibility, research positioning
**Effort:** Low
**Impact:** High (perception)

#### Implementation:

1. **Paper database** (`api/papers.py`)
```python
RESEARCH_PAPERS = {
    "attention": {
        "title": "Attention is All You Need",
        "authors": "Vaswani et al.",
        "year": 2017,
        "venue": "NeurIPS",
        "url": "https://arxiv.org/abs/1706.03762",
        "citations": 87000,
        "summary": "Introduced the Transformer architecture using self-attention."
    },
    "rag": {
        "title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks",
        "authors": "Lewis et al.",
        "year": 2020,
        "venue": "NeurIPS",
        "url": "https://arxiv.org/abs/2005.11401",
        "citations": 3200,
        "summary": "Combines retrieval with generation for factual QA."
    },
    "tot": {
        "title": "Tree of Thoughts: Deliberate Problem Solving with LLMs",
        "authors": "Yao et al.",
        "year": 2023,
        "venue": "NeurIPS",
        "url": "https://arxiv.org/abs/2305.10601",
        "citations": 450,
        "summary": "Explores multiple reasoning paths like human problem-solving."
    },
    # Add 15+ more papers...
}

def get_relevant_papers(feature: str) -> List[Dict]:
    """Return papers relevant to the current feature."""
    feature_paper_map = {
        "rag": ["rag", "dense_retrieval"],
        "attention": ["attention", "transformers"],
        "reasoning": ["tot", "cot", "self_consistency"],
        # ...
    }
    return [RESEARCH_PAPERS[p] for p in feature_paper_map.get(feature, [])]
```

2. **Citation widget**
```html
<div class="paper-citations">
  <div class="citation-header">
    πŸ“š Research Foundations
  </div>
  <div class="citation-list">
    <div class="citation-item">
      <div class="citation-title">
        "Attention is All You Need"
      </div>
      <div class="citation-meta">
        Vaswani et al., NeurIPS 2017 | 87k citations
      </div>
      <div class="citation-actions">
        <a href="#" class="btn-citation">PDF</a>
        <a href="#" class="btn-citation">Code</a>
        <a href="#" class="btn-citation">Cite</a>
      </div>
    </div>
  </div>
</div>
```

---

### Priority 4: Uncertainty Quantification ⭐⭐
**Why:** Shows sophistication, useful for users
**Effort:** Low-Medium
**Impact:** Medium-High

#### Implementation:

1. **Confidence estimation** (demo mode)
```python
def estimate_confidence(query: str, response: str, mode: str) -> Dict:
    """
    Estimate confidence based on heuristics.
    In production, use actual model logits.
    """
    # Heuristics for demo
    confidence_base = 0.7
    
    # Boost confidence for technical mode (seems more certain)
    if mode == "technical":
        confidence_base += 0.1
    
    # Lower confidence for vague queries
    if len(query.split()) < 5:
        confidence_base -= 0.15
    
    # Add some noise for realism
    confidence = confidence_base + np.random.uniform(-0.1, 0.1)
    confidence = np.clip(confidence, 0.3, 0.95)
    
    # Estimate epistemic vs aleatoric
    epistemic = confidence * 0.6  # Model uncertainty
    aleatoric = confidence * 0.4  # Data ambiguity
    
    return {
        "overall": round(confidence, 2),
        "epistemic": round(epistemic, 2),
        "aleatoric": round(aleatoric, 2),
        "calibration_error": round(abs(confidence - 0.8), 3),
        "interpretation": interpret_confidence(confidence)
    }

def interpret_confidence(conf: float) -> str:
    if conf > 0.85:
        return "High confidence - well-established knowledge"
    elif conf > 0.65:
        return "Moderate confidence - generally accurate"
    else:
        return "Low confidence - consider verifying independently"
```

2. **Confidence gauge widget**
```html
<div class="confidence-gauge">
  <div class="gauge-header">Confidence Analysis</div>
  
  <div class="gauge-visual">
    <svg viewBox="0 0 200 100">
      <!-- Arc background -->
      <path d="M 20,80 A 60,60 0 0,1 180,80" 
            stroke="#333" stroke-width="20" fill="none"/>
      
      <!-- Confidence arc (dynamic) -->
      <path id="confidence-arc" 
            d="M 20,80 A 60,60 0 0,1 180,80" 
            stroke="url(#confidence-gradient)" 
            stroke-width="20" 
            fill="none"
            stroke-dasharray="251.2"
            stroke-dashoffset="125.6"/>
      
      <defs>
        <linearGradient id="confidence-gradient">
          <stop offset="0%" stop-color="#f56565"/>
          <stop offset="50%" stop-color="#f6ad55"/>
          <stop offset="100%" stop-color="#48bb78"/>
        </linearGradient>
      </defs>
    </svg>
    
    <div class="gauge-value">76%</div>
  </div>
  
  <div class="uncertainty-breakdown">
    <div class="uncertainty-item">
      <span class="label">Epistemic (Model)</span>
      <div class="bar" style="width: 60%"></div>
    </div>
    <div class="uncertainty-item">
      <span class="label">Aleatoric (Data)</span>
      <div class="bar" style="width: 85%"></div>
    </div>
  </div>
</div>
```

---

## Integration Plan

### Step 1: Update `api/ask.py`
Add these fields to response:
```python
{
  "result": "...",
  "research_data": {
    "rag_pipeline": {...},  # RAG stages
    "attention": {...},      # Attention weights
    "confidence": {...},     # Uncertainty metrics
    "papers": [...]          # Relevant citations
  }
}
```

### Step 2: Update `public/index.html`
Add new sections:
```html
<div class="research-panel" style="display:none" id="research-panel">
  <div class="panel-tabs">
    <button class="tab active" data-tab="rag">RAG Pipeline</button>
    <button class="tab" data-tab="attention">Attention</button>
    <button class="tab" data-tab="confidence">Confidence</button>
    <button class="tab" data-tab="papers">Papers</button>
  </div>
  
  <div class="panel-content">
    <div id="rag-tab" class="tab-pane active"></div>
    <div id="attention-tab" class="tab-pane"></div>
    <div id="confidence-tab" class="tab-pane"></div>
    <div id="papers-tab" class="tab-pane"></div>
  </div>
</div>

<button id="toggle-research" class="btn-toggle">
  πŸ”¬ Show Research Details
</button>
```

### Step 3: Add Dependencies
```bash
# For visualization
npm install plotly.js d3

# Or use CDN in HTML
<script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script>
```

---

## Timeline

**Day 1:**
- βœ… Set up paper database
- βœ… Add citation widget
- βœ… Basic confidence estimation
- βœ… Update response structure

**Day 2:**
- βœ… Implement RAG tracker (mock data)
- βœ… Build RAG pipeline UI
- βœ… Style research panel
- βœ… Add confidence gauge

**Day 3:**
- βœ… Generate attention heatmaps
- βœ… Integrate Plotly visualization
- βœ… Polish animations
- βœ… Test & deploy

---

## Success Criteria

βœ“ Users can toggle "Research Mode"
βœ“ 4 interactive visualizations working
βœ“ 10+ papers cited with links
βœ“ Confidence scores shown per response
βœ“ Dark theme, monospace aesthetic
βœ“ Export visualizations as images
βœ“ Mobile responsive

---

## Next Phase Preview

Once Phase 1 is solid, Phase 2 adds:
- 🌳 Tree-of-Thoughts interactive explorer
- πŸ•ΈοΈ Knowledge graph visualization
- 🧠 Cognitive load real-time monitor
- πŸ“Š A/B testing dashboard

**Ready to start implementing?** Let's begin with the paper citation system (easiest) or RAG pipeline (most visual impact)?