Spaces:
Sleeping
Sleeping
File size: 11,576 Bytes
f2491fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# π Phase 1 Implementation Plan - Research Features
## Quick Wins: Build These First (2-3 days)
### Priority 1: RAG Pipeline Visualization βββ
**Why:** Shows research credibility, transparency, visual appeal
**Effort:** Medium
**Impact:** High
#### Implementation Steps:
1. **Backend: Track RAG stages** (`api/rag_tracker.py`)
```python
class RAGTracker:
def __init__(self):
self.stages = []
def track_query_encoding(self, query, embedding):
self.stages.append({
"stage": "encoding",
"query": query,
"embedding_preview": embedding[:10], # First 10 dims
"timestamp": time.time()
})
def track_retrieval(self, documents, scores):
self.stages.append({
"stage": "retrieval",
"num_docs": len(documents),
"top_scores": scores[:5],
"documents": [{"text": d[:100], "score": s}
for d, s in zip(documents[:5], scores[:5])]
})
def track_generation(self, context, response):
self.stages.append({
"stage": "generation",
"context_length": len(context),
"response_length": len(response),
"attribution": self.extract_citations(response)
})
```
2. **Frontend: RAG Pipeline Viewer** (add to `index.html`)
```html
<div class="rag-pipeline" id="rag-pipeline">
<div class="stage" data-stage="encoding">
<div class="stage-icon">π</div>
<div class="stage-title">Query Encoding</div>
<div class="stage-details">
<div class="embedding-preview"></div>
</div>
</div>
<div class="stage" data-stage="retrieval">
<div class="stage-icon">π</div>
<div class="stage-title">Document Retrieval</div>
<div class="retrieved-docs"></div>
</div>
<div class="stage" data-stage="generation">
<div class="stage-icon">βοΈ</div>
<div class="stage-title">Generation</div>
<div class="citations"></div>
</div>
</div>
```
3. **Styling: Research Lab Theme**
```css
.rag-pipeline {
background: #1e1e1e;
color: #d4d4d4;
font-family: 'Fira Code', monospace;
padding: 20px;
border-radius: 8px;
margin: 20px 0;
}
.stage {
border-left: 3px solid #007acc;
padding: 15px;
margin: 10px 0;
transition: all 0.3s;
}
.stage.active {
border-left-color: #4ec9b0;
background: #2d2d2d;
}
.embedding-preview {
font-family: 'Courier New', monospace;
background: #0e0e0e;
padding: 10px;
border-radius: 4px;
overflow-x: auto;
}
```
---
### Priority 2: Attention Visualization ββ
**Why:** Shows interpretability, looks impressive, educational
**Effort:** Medium-High
**Impact:** Very High (visually stunning)
#### Implementation:
1. **Mock attention data in demo mode**
```python
def generate_attention_heatmap(query: str, response: str):
"""Generate synthetic attention weights for demo."""
query_tokens = query.split()
response_tokens = response.split()[:20] # First 20 tokens
# Simulate attention: query tokens attend to relevant response tokens
attention = np.random.rand(len(query_tokens), len(response_tokens))
# Add some structure (diagonal-ish for realistic look)
for i in range(len(query_tokens)):
attention[i, i:i+3] *= 2 # Boost nearby tokens
attention = softmax(attention, axis=1)
return {
"query_tokens": query_tokens,
"response_tokens": response_tokens,
"attention_weights": attention.tolist()
}
```
2. **Interactive heatmap with Plotly or D3.js**
```javascript
function renderAttentionHeatmap(data) {
const trace = {
x: data.response_tokens,
y: data.query_tokens,
z: data.attention_weights,
type: 'heatmap',
colorscale: 'Viridis',
hoverongaps: false
};
const layout = {
title: 'Attention Pattern: Query β Response',
xaxis: { title: 'Response Tokens' },
yaxis: { title: 'Query Tokens' },
paper_bgcolor: '#1e1e1e',
plot_bgcolor: '#1e1e1e',
font: { color: '#d4d4d4' }
};
Plotly.newPlot('attention-heatmap', [trace], layout);
}
```
---
### Priority 3: Paper Citation System βββ
**Why:** Academic credibility, research positioning
**Effort:** Low
**Impact:** High (perception)
#### Implementation:
1. **Paper database** (`api/papers.py`)
```python
RESEARCH_PAPERS = {
"attention": {
"title": "Attention is All You Need",
"authors": "Vaswani et al.",
"year": 2017,
"venue": "NeurIPS",
"url": "https://arxiv.org/abs/1706.03762",
"citations": 87000,
"summary": "Introduced the Transformer architecture using self-attention."
},
"rag": {
"title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks",
"authors": "Lewis et al.",
"year": 2020,
"venue": "NeurIPS",
"url": "https://arxiv.org/abs/2005.11401",
"citations": 3200,
"summary": "Combines retrieval with generation for factual QA."
},
"tot": {
"title": "Tree of Thoughts: Deliberate Problem Solving with LLMs",
"authors": "Yao et al.",
"year": 2023,
"venue": "NeurIPS",
"url": "https://arxiv.org/abs/2305.10601",
"citations": 450,
"summary": "Explores multiple reasoning paths like human problem-solving."
},
# Add 15+ more papers...
}
def get_relevant_papers(feature: str) -> List[Dict]:
"""Return papers relevant to the current feature."""
feature_paper_map = {
"rag": ["rag", "dense_retrieval"],
"attention": ["attention", "transformers"],
"reasoning": ["tot", "cot", "self_consistency"],
# ...
}
return [RESEARCH_PAPERS[p] for p in feature_paper_map.get(feature, [])]
```
2. **Citation widget**
```html
<div class="paper-citations">
<div class="citation-header">
π Research Foundations
</div>
<div class="citation-list">
<div class="citation-item">
<div class="citation-title">
"Attention is All You Need"
</div>
<div class="citation-meta">
Vaswani et al., NeurIPS 2017 | 87k citations
</div>
<div class="citation-actions">
<a href="#" class="btn-citation">PDF</a>
<a href="#" class="btn-citation">Code</a>
<a href="#" class="btn-citation">Cite</a>
</div>
</div>
</div>
</div>
```
---
### Priority 4: Uncertainty Quantification ββ
**Why:** Shows sophistication, useful for users
**Effort:** Low-Medium
**Impact:** Medium-High
#### Implementation:
1. **Confidence estimation** (demo mode)
```python
def estimate_confidence(query: str, response: str, mode: str) -> Dict:
"""
Estimate confidence based on heuristics.
In production, use actual model logits.
"""
# Heuristics for demo
confidence_base = 0.7
# Boost confidence for technical mode (seems more certain)
if mode == "technical":
confidence_base += 0.1
# Lower confidence for vague queries
if len(query.split()) < 5:
confidence_base -= 0.15
# Add some noise for realism
confidence = confidence_base + np.random.uniform(-0.1, 0.1)
confidence = np.clip(confidence, 0.3, 0.95)
# Estimate epistemic vs aleatoric
epistemic = confidence * 0.6 # Model uncertainty
aleatoric = confidence * 0.4 # Data ambiguity
return {
"overall": round(confidence, 2),
"epistemic": round(epistemic, 2),
"aleatoric": round(aleatoric, 2),
"calibration_error": round(abs(confidence - 0.8), 3),
"interpretation": interpret_confidence(confidence)
}
def interpret_confidence(conf: float) -> str:
if conf > 0.85:
return "High confidence - well-established knowledge"
elif conf > 0.65:
return "Moderate confidence - generally accurate"
else:
return "Low confidence - consider verifying independently"
```
2. **Confidence gauge widget**
```html
<div class="confidence-gauge">
<div class="gauge-header">Confidence Analysis</div>
<div class="gauge-visual">
<svg viewBox="0 0 200 100">
<!-- Arc background -->
<path d="M 20,80 A 60,60 0 0,1 180,80"
stroke="#333" stroke-width="20" fill="none"/>
<!-- Confidence arc (dynamic) -->
<path id="confidence-arc"
d="M 20,80 A 60,60 0 0,1 180,80"
stroke="url(#confidence-gradient)"
stroke-width="20"
fill="none"
stroke-dasharray="251.2"
stroke-dashoffset="125.6"/>
<defs>
<linearGradient id="confidence-gradient">
<stop offset="0%" stop-color="#f56565"/>
<stop offset="50%" stop-color="#f6ad55"/>
<stop offset="100%" stop-color="#48bb78"/>
</linearGradient>
</defs>
</svg>
<div class="gauge-value">76%</div>
</div>
<div class="uncertainty-breakdown">
<div class="uncertainty-item">
<span class="label">Epistemic (Model)</span>
<div class="bar" style="width: 60%"></div>
</div>
<div class="uncertainty-item">
<span class="label">Aleatoric (Data)</span>
<div class="bar" style="width: 85%"></div>
</div>
</div>
</div>
```
---
## Integration Plan
### Step 1: Update `api/ask.py`
Add these fields to response:
```python
{
"result": "...",
"research_data": {
"rag_pipeline": {...}, # RAG stages
"attention": {...}, # Attention weights
"confidence": {...}, # Uncertainty metrics
"papers": [...] # Relevant citations
}
}
```
### Step 2: Update `public/index.html`
Add new sections:
```html
<div class="research-panel" style="display:none" id="research-panel">
<div class="panel-tabs">
<button class="tab active" data-tab="rag">RAG Pipeline</button>
<button class="tab" data-tab="attention">Attention</button>
<button class="tab" data-tab="confidence">Confidence</button>
<button class="tab" data-tab="papers">Papers</button>
</div>
<div class="panel-content">
<div id="rag-tab" class="tab-pane active"></div>
<div id="attention-tab" class="tab-pane"></div>
<div id="confidence-tab" class="tab-pane"></div>
<div id="papers-tab" class="tab-pane"></div>
</div>
</div>
<button id="toggle-research" class="btn-toggle">
π¬ Show Research Details
</button>
```
### Step 3: Add Dependencies
```bash
# For visualization
npm install plotly.js d3
# Or use CDN in HTML
<script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script>
```
---
## Timeline
**Day 1:**
- β
Set up paper database
- β
Add citation widget
- β
Basic confidence estimation
- β
Update response structure
**Day 2:**
- β
Implement RAG tracker (mock data)
- β
Build RAG pipeline UI
- β
Style research panel
- β
Add confidence gauge
**Day 3:**
- β
Generate attention heatmaps
- β
Integrate Plotly visualization
- β
Polish animations
- β
Test & deploy
---
## Success Criteria
β Users can toggle "Research Mode"
β 4 interactive visualizations working
β 10+ papers cited with links
β Confidence scores shown per response
β Dark theme, monospace aesthetic
β Export visualizations as images
β Mobile responsive
---
## Next Phase Preview
Once Phase 1 is solid, Phase 2 adds:
- π³ Tree-of-Thoughts interactive explorer
- πΈοΈ Knowledge graph visualization
- π§ Cognitive load real-time monitor
- π A/B testing dashboard
**Ready to start implementing?** Let's begin with the paper citation system (easiest) or RAG pipeline (most visual impact)?
|