Spaces:
Paused
Paused
| from gradio import components as gc | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| # Load model and tokenizer | |
| model_name = "Canstralian/CySec_Known_Exploit_Analyzer" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| # Define the function for text input processing | |
| def greet(text): | |
| # Tokenize and process the input text | |
| inputs = tokenizer(text, return_tensors="pt") | |
| outputs = model(**inputs) | |
| # Extract the label with the highest score | |
| predicted_label = outputs.logits.argmax().item() | |
| return f"Greeting, {text}! Predicted label: {predicted_label}" | |
| # Create the interface | |
| iface = gr.Interface( | |
| fn=greet, | |
| inputs="text", | |
| outputs="text", | |
| title="Greeting App", | |
| description="Ask a user for their name and greet them." | |
| ) | |
| # Optional: define and add a sidebar if needed | |
| # Example sidebar component (replace with your intended content) | |
| sidebar = gr.Textbox(label="Sidebar Info") | |
| iface.add_component(sidebar, side="left") | |
| # Launch the Gradio app | |
| iface.launch() | |