Spaces:
Sleeping
Sleeping
| import os | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
| os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
| os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
| os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
| import tensorflow as tf | |
| tf.config.set_visible_devices([], 'GPU') | |
| import gradio as gr | |
| import numpy as np | |
| from tensorflow.keras.preprocessing import image | |
| from tensorflow.keras.models import model_from_json | |
| from PIL import Image | |
| from description import description | |
| from location import location | |
| def load_model_from_file(json_path, h5_path): | |
| with open(json_path, "r") as f: | |
| json_config = f.read() | |
| model = model_from_json(json_config) | |
| model.load_weights(h5_path) | |
| return model | |
| model = load_model_from_file("model.json", "my_model.h5") | |
| labels = [ | |
| "Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", | |
| "Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", | |
| "Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" | |
| ] | |
| def classify_image(img): | |
| try: | |
| img = img.resize((224, 224)) | |
| img_array = image.img_to_array(img) | |
| img_array = np.expand_dims(img_array, axis=0) | |
| img_array = img_array / 255.0 | |
| pred = model.predict(img_array)[0] | |
| confidence = np.max(pred) | |
| predicted_label = labels[np.argmax(pred)] | |
| akurasi = float(confidence) | |
| if confidence < 0.8: | |
| label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100) | |
| deskripsi = ( | |
| "Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. " | |
| "Pastikan anda berada di salah satu tempat seperti:\n" | |
| "- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n" | |
| "- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n" | |
| "- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n" | |
| "- Taman Sari\n- Tugu Yogyakarta" | |
| ) | |
| lokasi = "-" | |
| else: | |
| label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" | |
| deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") | |
| lokasi = location.get(predicted_label, None) | |
| if lokasi: | |
| lokasi = f'<a href="{lokasi}" target="_blank">Lihat Lokasi di Google Maps</a>' | |
| else: | |
| lokasi = "Lokasi tidak ditemukan" | |
| return label_output, deskripsi, lokasi, akurasi | |
| except Exception as e: | |
| return "Error", str(e), "-" | |
| interface = gr.Interface( | |
| fn=classify_image, | |
| inputs=gr.Image(type="pil", label="Upload Gambar"), | |
| outputs=[ | |
| gr.Textbox(label="Output Klasifikasi"), | |
| gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50), | |
| gr.HTML(label="Link Lokasi"), | |
| ], | |
| title="Klasifikasi Gambar", | |
| description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." | |
| ) | |
| interface.launch() | |