DeMoE / archs /arch_model.py
danifei's picture
basic functionality
034f4b8
raw
history blame
3.76 kB
import torch
import torch.nn as nn
try:
from .arch_util import LayerNorm2d
except:
from arch_util import LayerNorm2d
# ------------------------------------------------------------------------
# Modified from NAFNet (https://github.com/megvii-research/NAFNet)
# ------------------------------------------------------------------------
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class NAFBlock(nn.Module):
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
super().__init__()
dw_channel = c * DW_Expand
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True) # the dconv
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
self.sca = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * c
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(c)
self.norm2 = LayerNorm2d(c)
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
def forward(self, inp):
x = inp # size [B, C, H, W]
x = self.norm1(x) # size [B, C, H, W]
x = self.conv1(x) # size [B, 2*C, H, W]
x = self.conv2(x) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = x * self.sca(x) # size [B, C, H, W]
x = self.conv3(x) # size [B, C, H, W]
x = self.dropout1(x)
y = inp + x * self.beta # size [B, C, H, W]
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = self.conv5(x) # size [B, C, H, W]
x = self.dropout2(x)
x = y + x * self.gamma
return x
class EfficientClassificationHead(nn.Module):
def __init__(self, in_channels, num_classes=5):
super().__init__()
self.conv_bottleneck = nn.Sequential(
nn.Conv2d(in_channels, 256, kernel_size=1), # Channel reduction
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Dropout2d(0.2))
self.attention = nn.Sequential(
nn.Conv2d(256, 1, kernel_size=1),
nn.Sigmoid())
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Dropout(0.3),
nn.Linear(128, num_classes))
def forward(self, x):
x = self.conv_bottleneck(x)
attention_mask = self.attention(x)
x = x * attention_mask # Spatial attention
return self.classifier(x)