DeMoE / app.py
alvlar02's picture
Update app.py
2712eab verified
import gradio as gr
from PIL import Image
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
import os
import glob
from archs import create_model, load_model
# -------- Detect folders & images (assets/<folder>) --------
IMG_EXTS = (".png", ".jpg", ".jpeg", ".bmp", ".webp")
def list_subfolders(base="examples"):
"""Return a sorted list of immediate subfolders inside base."""
if not os.path.isdir(base):
return []
subs = [d for d in sorted(os.listdir(base)) if os.path.isdir(os.path.join(base, d))]
return subs
def list_images(folder):
"""Return full paths of images inside examples/<folder>."""
paths = sorted(glob.glob(os.path.join("examples", folder, "*")))
return [p for p in paths if p.lower().endswith(IMG_EXTS)]
# -------- Folder/Gallery interactions --------
def update_gallery(folder):
"""Given a folder name, return the gallery items (list of image paths) and store the same list in state."""
files = list_images(folder)
print(files)
return gr.update(value=files, visible=True), files
def load_from_gallery(evt: gr.SelectData, current_files):
"""On gallery click, load the clicked image path into the input image."""
idx = evt.index
if not current_files or idx is None or idx >= len(current_files):
return gr.update()
path = current_files[idx]
print(path)
return Image.open(path)
# Model
PATH_MODEL = './DeMoE.pt'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_opt = {
'name': 'DeMoE',
'img_channels': 3,
'width': 32,
'middle_blk_num': 2,
'enc_blk_nums': [2, 2, 2, 2],
'dec_blk_nums': [2, 2, 2, 2],
'num_experts': 5,
'k_used': 1
}
pil_to_tensor = transforms.ToTensor()
tensor_to_pil = transforms.ToPILImage()
model = create_model(model_opt, device)
checkpoints = torch.load(PATH_MODEL, map_location=device, weights_only=False)
model = load_model(model, PATH_MODEL, device)
model.eval()
def pad_tensor(tensor, multiple = 16):
'''pad the tensor to be multiple of some number'''
multiple = multiple
_, _, H, W = tensor.shape
pad_h = (multiple - H % multiple) % multiple
pad_w = (multiple - W % multiple) % multiple
tensor = F.pad(tensor, (0, pad_w, 0, pad_h), value = 0)
return tensor
TASK_LABELS = ["Auto", "Defocus", "Low-Light", "Global-Motion", "Synth-Global-Motion", "Local-Motion"]
# Map pretty label -> internal task code used by the model
LABEL_TO_TASK = {
"Auto": "auto",
"Low-Light": "low_light",
"Global-Motion": "global_motion",
"Defocus": "defocus",
"Synth-Global-Motion": "synth_global_motion",
"Local-Motion": "local_motion",
}
def process_img(image, task_label = 'auto'):
"""Main inference: converts PIL -> tensor, pads, runs the model with selected task, clamps, crops, returns PIL."""
task_label = LABEL_TO_TASK.get(task_label, 'auto')
tensor = pil_to_tensor(image).unsqueeze(0).to(device)
_, _, H, W = tensor.shape
print('Using task:', task_label)
tensor = pad_tensor(tensor)
with torch.no_grad():
output_dict = model(tensor, task_label)
output = output_dict['output']
# print(output.shape)
output = torch.clamp(output, 0., 1.)
output = output[:,:, :H, :W].squeeze(0)
return tensor_to_pil(output)
title = 'DeMoE 🌪️​'
description = ''' >**Abstract**: Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also shows promising generalization to unseen blur scenarios, particularly when leveraging appropriate expert selection.
[Daniel Feijoo](https://github.com/danifei), Paula Garrido-Mellado, Jaesung Rim, Álvaro García, Marcos V. Conde
[Fundación Cidaut](https://cidaut.ai/)
Available code at [github](https://github.com/cidautai/DeMoE). More information on the [Arxiv paper](https://arxiv.org/pdf/2508.06228).
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some Low-Light degradations.**
<br>
'''
css = """
.fitbox img,
.fitbox canvas {
width: 100% !important;
height: 100% !important;
object-fit: contain !important;
}
"""
# Example lists per folder under ./assets (kept simple, no helpers)
exts = (".png", ".jpg", ".jpeg", ".bmp", ".webp")
def list_basenames(folder):
"""Return [[basename, task_label], ...] for gr.Examples using examples_dir."""
paths = sorted(glob.glob(f"examples/{folder}/*"))
basenames = [os.path.basename(p) for p in paths if p.lower().endswith(exts)]
# Default task per folder (tweak as you like)
default_task = "auto"
return [[name, default_task] for name in basenames]
examples_low_light = list_basenames("low_light")
examples_global_motion = list_basenames("global_motion")
examples_synth_global_motion = list_basenames("synth_global_motion")
examples_local_motion = list_basenames("local_motion")
examples_defocus = list_basenames("defocus")
# print(examples_defocus, examples_global_motion, examples_low_light, examples_synth_global_motion, examples_local_motion)
# -----------------------------
# Gradio Blocks layout
# -----------------------------
with gr.Blocks(css=css, title=title) as demo:
gr.Markdown(f"# {title}\n\n{description}")
with gr.Row():
# Input image and the task selector (Radio)
inp_img = gr.Image(type='pil', label='input', height=320)
# Output image and action button
out_img = gr.Image(type='pil', label='output', height=320)
task_selector = gr.Radio(
choices=TASK_LABELS,
value="Auto",
label="Blur type"
)
btn = gr.Button("Restore", variant="primary")
# Connect the button to the inference function
btn.click(
fn=process_img,
inputs=[inp_img, task_selector],
outputs=[out_img]
)
# Examples grouped by folder (each item loads image + task automatically)
gr.Markdown("## Examples")
with gr.Row():
# List folders found in ./assets
folders = list_subfolders("examples")
print(folders)
folder_radio = gr.Radio(choices=folders, label="Examples Folders", interactive=True)
gallery = gr.Gallery(
label="Images from the selected folder",
visible=False,
allow_preview=True,
columns=6,
height=320,
)
# State holds the current file list shown in the gallery (to resolve clicks)
current_files_state = gr.State([])
# When changing folder -> update gallery and state
folder_radio.change(
fn=update_gallery,
inputs=folder_radio,
outputs=[gallery, current_files_state]
)
# When clicking a thumbnail -> load it into the input image
gallery.select(
fn=load_from_gallery,
inputs=[current_files_state],
outputs=inp_img
)
if __name__ == '__main__':
demo.launch(show_error = True)