Spaces:
Running
Running
| # Phase 2 Implementation Spec: Search Vertical Slice | |
| **Goal**: Implement the "Eyes and Ears" of the agent β retrieving real biomedical data. | |
| **Philosophy**: "Real data, mocked connections." | |
| **Prerequisite**: Phase 1 complete (all tests passing) | |
| > **β οΈ Implementation Note (2025-01-27)**: The DuckDuckGo WebTool specified in this phase was removed in favor of the Europe PMC tool (see Phase 11). Europe PMC provides better coverage for biomedical research by including preprints, peer-reviewed articles, and patents. The current implementation uses PubMed, ClinicalTrials.gov, and Europe PMC as search sources. | |
| --- | |
| ## 1. The Slice Definition | |
| This slice covers: | |
| 1. **Input**: A string query (e.g., "metformin Alzheimer's disease"). | |
| 2. **Process**: | |
| - Fetch from PubMed (E-utilities API). | |
| - ~~Fetch from Web (DuckDuckGo).~~ **REMOVED** - Replaced by Europe PMC in Phase 11 | |
| - Normalize results into `Evidence` models. | |
| 3. **Output**: A list of `Evidence` objects. | |
| **Files to Create**: | |
| - `src/utils/models.py` - Pydantic models (Evidence, Citation, SearchResult) | |
| - `src/tools/pubmed.py` - PubMed E-utilities tool | |
| - ~~`src/tools/websearch.py` - DuckDuckGo search tool~~ **REMOVED** - See Phase 11 for Europe PMC replacement | |
| - `src/tools/search_handler.py` - Orchestrates multiple tools | |
| - `src/tools/__init__.py` - Exports | |
| **Additional Files (Post-Phase 2 Enhancements)**: | |
| - `src/tools/query_utils.py` - Query preprocessing (removes question words, expands medical synonyms) | |
| --- | |
| ## 2. PubMed E-utilities API Reference | |
| **Base URL**: `https://eutils.ncbi.nlm.nih.gov/entrez/eutils/` | |
| ### Key Endpoints | |
| | Endpoint | Purpose | Example | | |
| |----------|---------|---------| | |
| | `esearch.fcgi` | Search for article IDs | `?db=pubmed&term=metformin+alzheimer&retmax=10` | | |
| | `efetch.fcgi` | Fetch article details | `?db=pubmed&id=12345,67890&rettype=abstract&retmode=xml` | | |
| ### Rate Limiting (CRITICAL!) | |
| NCBI **requires** rate limiting: | |
| - **Without API key**: 3 requests/second | |
| - **With API key**: 10 requests/second | |
| Get a free API key: https://www.ncbi.nlm.nih.gov/account/settings/ | |
| ```python | |
| # Add to .env | |
| NCBI_API_KEY=your-key-here # Optional but recommended | |
| ``` | |
| ### Example Search Flow | |
| ``` | |
| 1. esearch: "metformin alzheimer" β [PMID: 12345, 67890, ...] | |
| 2. efetch: PMIDs β Full abstracts/metadata | |
| 3. Parse XML β Evidence objects | |
| ``` | |
| --- | |
| ## 3. Models (`src/utils/models.py`) | |
| ```python | |
| """Data models for the Search feature.""" | |
| from pydantic import BaseModel, Field | |
| from typing import Literal | |
| class Citation(BaseModel): | |
| """A citation to a source document.""" | |
| source: Literal["pubmed", "web"] = Field(description="Where this came from") | |
| title: str = Field(min_length=1, max_length=500) | |
| url: str = Field(description="URL to the source") | |
| date: str = Field(description="Publication date (YYYY-MM-DD or 'Unknown')") | |
| authors: list[str] = Field(default_factory=list) | |
| @property | |
| def formatted(self) -> str: | |
| """Format as a citation string.""" | |
| author_str = ", ".join(self.authors[:3]) | |
| if len(self.authors) > 3: | |
| author_str += " et al." | |
| return f"{author_str} ({self.date}). {self.title}. {self.source.upper()}" | |
| class Evidence(BaseModel): | |
| """A piece of evidence retrieved from search.""" | |
| content: str = Field(min_length=1, description="The actual text content") | |
| citation: Citation | |
| relevance: float = Field(default=0.0, ge=0.0, le=1.0, description="Relevance score 0-1") | |
| class Config: | |
| frozen = True # Immutable after creation | |
| class SearchResult(BaseModel): | |
| """Result of a search operation.""" | |
| query: str | |
| evidence: list[Evidence] | |
| sources_searched: list[Literal["pubmed", "web"]] | |
| total_found: int | |
| errors: list[str] = Field(default_factory=list) | |
| ``` | |
| --- | |
| ## 4. Tool Protocol (`src/tools/pubmed.py` and `src/tools/websearch.py`) | |
| ### The Interface (Protocol) - Add to `src/tools/__init__.py` | |
| ```python | |
| """Search tools package.""" | |
| from typing import Protocol, List | |
| # Import implementations | |
| from src.tools.pubmed import PubMedTool | |
| from src.tools.websearch import WebTool | |
| from src.tools.search_handler import SearchHandler | |
| # Re-export | |
| __all__ = ["SearchTool", "PubMedTool", "WebTool", "SearchHandler"] | |
| class SearchTool(Protocol): | |
| """Protocol defining the interface for all search tools.""" | |
| @property | |
| def name(self) -> str: | |
| """Human-readable name of this tool.""" | |
| ... | |
| async def search(self, query: str, max_results: int = 10) -> List["Evidence"]: | |
| """ | |
| Execute a search and return evidence. | |
| Args: | |
| query: The search query string | |
| max_results: Maximum number of results to return | |
| Returns: | |
| List of Evidence objects | |
| Raises: | |
| SearchError: If the search fails | |
| RateLimitError: If we hit rate limits | |
| """ | |
| ... | |
| ``` | |
| ### PubMed Tool Implementation (`src/tools/pubmed.py`) | |
| ```python | |
| """PubMed search tool using NCBI E-utilities.""" | |
| import asyncio | |
| import httpx | |
| import xmltodict | |
| from typing import List | |
| from tenacity import retry, stop_after_attempt, wait_exponential | |
| from src.utils.config import settings | |
| from src.utils.exceptions import SearchError, RateLimitError | |
| from src.utils.models import Evidence, Citation | |
| class PubMedTool: | |
| """Search tool for PubMed/NCBI.""" | |
| BASE_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils" | |
| RATE_LIMIT_DELAY = 0.34 # ~3 requests/sec without API key | |
| def __init__(self, api_key: str | None = None): | |
| self.api_key = api_key or getattr(settings, "ncbi_api_key", None) | |
| self._last_request_time = 0.0 | |
| @property | |
| def name(self) -> str: | |
| return "pubmed" | |
| async def _rate_limit(self) -> None: | |
| """Enforce NCBI rate limiting.""" | |
| now = asyncio.get_event_loop().time() | |
| elapsed = now - self._last_request_time | |
| if elapsed < self.RATE_LIMIT_DELAY: | |
| await asyncio.sleep(self.RATE_LIMIT_DELAY - elapsed) | |
| self._last_request_time = asyncio.get_event_loop().time() | |
| def _build_params(self, **kwargs) -> dict: | |
| """Build request params with optional API key.""" | |
| params = {**kwargs, "retmode": "json"} | |
| if self.api_key: | |
| params["api_key"] = self.api_key | |
| return params | |
| @retry( | |
| stop=stop_after_attempt(3), | |
| wait=wait_exponential(multiplier=1, min=1, max=10), | |
| reraise=True, | |
| ) | |
| async def search(self, query: str, max_results: int = 10) -> List[Evidence]: | |
| """ | |
| Search PubMed and return evidence. | |
| 1. ESearch: Get PMIDs matching query | |
| 2. EFetch: Get abstracts for those PMIDs | |
| 3. Parse and return Evidence objects | |
| """ | |
| await self._rate_limit() | |
| async with httpx.AsyncClient(timeout=30.0) as client: | |
| # Step 1: Search for PMIDs | |
| search_params = self._build_params( | |
| db="pubmed", | |
| term=query, | |
| retmax=max_results, | |
| sort="relevance", | |
| ) | |
| try: | |
| search_resp = await client.get( | |
| f"{self.BASE_URL}/esearch.fcgi", | |
| params=search_params, | |
| ) | |
| search_resp.raise_for_status() | |
| except httpx.HTTPStatusError as e: | |
| if e.response.status_code == 429: | |
| raise RateLimitError("PubMed rate limit exceeded") | |
| raise SearchError(f"PubMed search failed: {e}") | |
| search_data = search_resp.json() | |
| pmids = search_data.get("esearchresult", {}).get("idlist", []) | |
| if not pmids: | |
| return [] | |
| # Step 2: Fetch abstracts | |
| await self._rate_limit() | |
| fetch_params = self._build_params( | |
| db="pubmed", | |
| id=",".join(pmids), | |
| rettype="abstract", | |
| ) | |
| # Use XML for fetch (more reliable parsing) | |
| fetch_params["retmode"] = "xml" | |
| fetch_resp = await client.get( | |
| f"{self.BASE_URL}/efetch.fcgi", | |
| params=fetch_params, | |
| ) | |
| fetch_resp.raise_for_status() | |
| # Step 3: Parse XML to Evidence | |
| return self._parse_pubmed_xml(fetch_resp.text) | |
| def _parse_pubmed_xml(self, xml_text: str) -> List[Evidence]: | |
| """Parse PubMed XML into Evidence objects.""" | |
| try: | |
| data = xmltodict.parse(xml_text) | |
| except Exception as e: | |
| raise SearchError(f"Failed to parse PubMed XML: {e}") | |
| articles = data.get("PubmedArticleSet", {}).get("PubmedArticle", []) | |
| # Handle single article (xmltodict returns dict instead of list) | |
| if isinstance(articles, dict): | |
| articles = [articles] | |
| evidence_list = [] | |
| for article in articles: | |
| try: | |
| evidence = self._article_to_evidence(article) | |
| if evidence: | |
| evidence_list.append(evidence) | |
| except Exception: | |
| continue # Skip malformed articles | |
| return evidence_list | |
| def _article_to_evidence(self, article: dict) -> Evidence | None: | |
| """Convert a single PubMed article to Evidence.""" | |
| medline = article.get("MedlineCitation", {}) | |
| article_data = medline.get("Article", {}) | |
| # Extract PMID | |
| pmid = medline.get("PMID", {}) | |
| if isinstance(pmid, dict): | |
| pmid = pmid.get("#text", "") | |
| # Extract title | |
| title = article_data.get("ArticleTitle", "") | |
| if isinstance(title, dict): | |
| title = title.get("#text", str(title)) | |
| # Extract abstract | |
| abstract_data = article_data.get("Abstract", {}).get("AbstractText", "") | |
| if isinstance(abstract_data, list): | |
| abstract = " ".join( | |
| item.get("#text", str(item)) if isinstance(item, dict) else str(item) | |
| for item in abstract_data | |
| ) | |
| elif isinstance(abstract_data, dict): | |
| abstract = abstract_data.get("#text", str(abstract_data)) | |
| else: | |
| abstract = str(abstract_data) | |
| if not abstract or not title: | |
| return None | |
| # Extract date | |
| pub_date = article_data.get("Journal", {}).get("JournalIssue", {}).get("PubDate", {}) | |
| year = pub_date.get("Year", "Unknown") | |
| month = pub_date.get("Month", "01") | |
| day = pub_date.get("Day", "01") | |
| date_str = f"{year}-{month}-{day}" if year != "Unknown" else "Unknown" | |
| # Extract authors | |
| author_list = article_data.get("AuthorList", {}).get("Author", []) | |
| if isinstance(author_list, dict): | |
| author_list = [author_list] | |
| authors = [] | |
| for author in author_list[:5]: # Limit to 5 authors | |
| last = author.get("LastName", "") | |
| first = author.get("ForeName", "") | |
| if last: | |
| authors.append(f"{last} {first}".strip()) | |
| return Evidence( | |
| content=abstract[:2000], # Truncate long abstracts | |
| citation=Citation( | |
| source="pubmed", | |
| title=title[:500], | |
| url=f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/", | |
| date=date_str, | |
| authors=authors, | |
| ), | |
| ) | |
| ``` | |
| ### DuckDuckGo Tool Implementation (`src/tools/websearch.py`) | |
| ```python | |
| """Web search tool using DuckDuckGo.""" | |
| from typing import List | |
| from duckduckgo_search import DDGS | |
| from src.utils.exceptions import SearchError | |
| from src.utils.models import Evidence, Citation | |
| class WebTool: | |
| """Search tool for general web search via DuckDuckGo.""" | |
| def __init__(self): | |
| pass | |
| @property | |
| def name(self) -> str: | |
| return "web" | |
| async def search(self, query: str, max_results: int = 10) -> List[Evidence]: | |
| """ | |
| Search DuckDuckGo and return evidence. | |
| Note: duckduckgo-search is synchronous, so we run it in executor. | |
| """ | |
| import asyncio | |
| loop = asyncio.get_event_loop() | |
| try: | |
| results = await loop.run_in_executor( | |
| None, | |
| lambda: self._sync_search(query, max_results), | |
| ) | |
| return results | |
| except Exception as e: | |
| raise SearchError(f"Web search failed: {e}") | |
| def _sync_search(self, query: str, max_results: int) -> List[Evidence]: | |
| """Synchronous search implementation.""" | |
| evidence_list = [] | |
| with DDGS() as ddgs: | |
| results = list(ddgs.text(query, max_results=max_results)) | |
| for result in results: | |
| evidence_list.append( | |
| Evidence( | |
| content=result.get("body", "")[:1000], | |
| citation=Citation( | |
| source="web", | |
| title=result.get("title", "Unknown")[:500], | |
| url=result.get("href", ""), | |
| date="Unknown", | |
| authors=[], | |
| ), | |
| ) | |
| ) | |
| return evidence_list | |
| ``` | |
| --- | |
| ## 5. Search Handler (`src/tools/search_handler.py`) | |
| The handler orchestrates multiple tools using the **Scatter-Gather** pattern. | |
| ```python | |
| """Search handler - orchestrates multiple search tools.""" | |
| import asyncio | |
| from typing import List, Protocol | |
| import structlog | |
| from src.utils.exceptions import SearchError | |
| from src.utils.models import Evidence, SearchResult | |
| logger = structlog.get_logger() | |
| class SearchTool(Protocol): | |
| """Protocol defining the interface for all search tools.""" | |
| @property | |
| def name(self) -> str: | |
| ... | |
| async def search(self, query: str, max_results: int = 10) -> List[Evidence]: | |
| ... | |
| def flatten(nested: List[List[Evidence]]) -> List[Evidence]: | |
| """Flatten a list of lists into a single list.""" | |
| return [item for sublist in nested for item in sublist] | |
| class SearchHandler: | |
| """Orchestrates parallel searches across multiple tools.""" | |
| def __init__(self, tools: List[SearchTool], timeout: float = 30.0): | |
| """ | |
| Initialize the search handler. | |
| Args: | |
| tools: List of search tools to use | |
| timeout: Timeout for each search in seconds | |
| """ | |
| self.tools = tools | |
| self.timeout = timeout | |
| async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult: | |
| """ | |
| Execute search across all tools in parallel. | |
| Args: | |
| query: The search query | |
| max_results_per_tool: Max results from each tool | |
| Returns: | |
| SearchResult containing all evidence and metadata | |
| """ | |
| logger.info("Starting search", query=query, tools=[t.name for t in self.tools]) | |
| # Create tasks for parallel execution | |
| tasks = [ | |
| self._search_with_timeout(tool, query, max_results_per_tool) | |
| for tool in self.tools | |
| ] | |
| # Gather results (don't fail if one tool fails) | |
| results = await asyncio.gather(*tasks, return_exceptions=True) | |
| # Process results | |
| all_evidence: List[Evidence] = [] | |
| sources_searched: List[str] = [] | |
| errors: List[str] = [] | |
| for tool, result in zip(self.tools, results): | |
| if isinstance(result, Exception): | |
| errors.append(f"{tool.name}: {str(result)}") | |
| logger.warning("Search tool failed", tool=tool.name, error=str(result)) | |
| else: | |
| all_evidence.extend(result) | |
| sources_searched.append(tool.name) | |
| logger.info("Search tool succeeded", tool=tool.name, count=len(result)) | |
| return SearchResult( | |
| query=query, | |
| evidence=all_evidence, | |
| sources_searched=sources_searched, | |
| total_found=len(all_evidence), | |
| errors=errors, | |
| ) | |
| async def _search_with_timeout( | |
| self, | |
| tool: SearchTool, | |
| query: str, | |
| max_results: int, | |
| ) -> List[Evidence]: | |
| """Execute a single tool search with timeout.""" | |
| try: | |
| return await asyncio.wait_for( | |
| tool.search(query, max_results), | |
| timeout=self.timeout, | |
| ) | |
| except asyncio.TimeoutError: | |
| raise SearchError(f"{tool.name} search timed out after {self.timeout}s") | |
| ``` | |
| --- | |
| ## 6. TDD Workflow | |
| ### Test File: `tests/unit/tools/test_pubmed.py` | |
| ```python | |
| """Unit tests for PubMed tool.""" | |
| import pytest | |
| from unittest.mock import AsyncMock, MagicMock | |
| # Sample PubMed XML response for mocking | |
| SAMPLE_PUBMED_XML = """<?xml version="1.0" ?> | |
| <PubmedArticleSet> | |
| <PubmedArticle> | |
| <MedlineCitation> | |
| <PMID>12345678</PMID> | |
| <Article> | |
| <ArticleTitle>Metformin in Alzheimer's Disease: A Systematic Review</ArticleTitle> | |
| <Abstract> | |
| <AbstractText>Metformin shows neuroprotective properties...</AbstractText> | |
| </Abstract> | |
| <AuthorList> | |
| <Author> | |
| <LastName>Smith</LastName> | |
| <ForeName>John</ForeName> | |
| </Author> | |
| </AuthorList> | |
| <Journal> | |
| <JournalIssue> | |
| <PubDate> | |
| <Year>2024</Year> | |
| <Month>01</Month> | |
| </PubDate> | |
| </JournalIssue> | |
| </Journal> | |
| </Article> | |
| </MedlineCitation> | |
| </PubmedArticle> | |
| </PubmedArticleSet> | |
| """ | |
| class TestPubMedTool: | |
| """Tests for PubMedTool.""" | |
| @pytest.mark.asyncio | |
| async def test_search_returns_evidence(self, mocker): | |
| """PubMedTool should return Evidence objects from search.""" | |
| from src.tools.pubmed import PubMedTool | |
| # Mock the HTTP responses | |
| mock_search_response = MagicMock() | |
| mock_search_response.json.return_value = { | |
| "esearchresult": {"idlist": ["12345678"]} | |
| } | |
| mock_search_response.raise_for_status = MagicMock() | |
| mock_fetch_response = MagicMock() | |
| mock_fetch_response.text = SAMPLE_PUBMED_XML | |
| mock_fetch_response.raise_for_status = MagicMock() | |
| mock_client = AsyncMock() | |
| mock_client.get = AsyncMock(side_effect=[mock_search_response, mock_fetch_response]) | |
| mock_client.__aenter__ = AsyncMock(return_value=mock_client) | |
| mock_client.__aexit__ = AsyncMock(return_value=None) | |
| mocker.patch("httpx.AsyncClient", return_value=mock_client) | |
| # Act | |
| tool = PubMedTool() | |
| results = await tool.search("metformin alzheimer") | |
| # Assert | |
| assert len(results) == 1 | |
| assert results[0].citation.source == "pubmed" | |
| assert "Metformin" in results[0].citation.title | |
| assert "12345678" in results[0].citation.url | |
| @pytest.mark.asyncio | |
| async def test_search_empty_results(self, mocker): | |
| """PubMedTool should return empty list when no results.""" | |
| from src.tools.pubmed import PubMedTool | |
| mock_response = MagicMock() | |
| mock_response.json.return_value = {"esearchresult": {"idlist": []}} | |
| mock_response.raise_for_status = MagicMock() | |
| mock_client = AsyncMock() | |
| mock_client.get = AsyncMock(return_value=mock_response) | |
| mock_client.__aenter__ = AsyncMock(return_value=mock_client) | |
| mock_client.__aexit__ = AsyncMock(return_value=None) | |
| mocker.patch("httpx.AsyncClient", return_value=mock_client) | |
| tool = PubMedTool() | |
| results = await tool.search("xyznonexistentquery123") | |
| assert results == [] | |
| def test_parse_pubmed_xml(self): | |
| """PubMedTool should correctly parse XML.""" | |
| from src.tools.pubmed import PubMedTool | |
| tool = PubMedTool() | |
| results = tool._parse_pubmed_xml(SAMPLE_PUBMED_XML) | |
| assert len(results) == 1 | |
| assert results[0].citation.source == "pubmed" | |
| assert "Smith John" in results[0].citation.authors | |
| ``` | |
| ### Test File: `tests/unit/tools/test_websearch.py` | |
| ```python | |
| """Unit tests for WebTool.""" | |
| import pytest | |
| from unittest.mock import MagicMock | |
| class TestWebTool: | |
| """Tests for WebTool.""" | |
| @pytest.mark.asyncio | |
| async def test_search_returns_evidence(self, mocker): | |
| """WebTool should return Evidence objects from search.""" | |
| from src.tools.websearch import WebTool | |
| mock_results = [ | |
| { | |
| "title": "Drug Repurposing Article", | |
| "href": "https://example.com/article", | |
| "body": "Some content about drug repurposing...", | |
| } | |
| ] | |
| mock_ddgs = MagicMock() | |
| mock_ddgs.__enter__ = MagicMock(return_value=mock_ddgs) | |
| mock_ddgs.__exit__ = MagicMock(return_value=None) | |
| mock_ddgs.text = MagicMock(return_value=mock_results) | |
| mocker.patch("src.tools.websearch.DDGS", return_value=mock_ddgs) | |
| tool = WebTool() | |
| results = await tool.search("drug repurposing") | |
| assert len(results) == 1 | |
| assert results[0].citation.source == "web" | |
| assert "Drug Repurposing" in results[0].citation.title | |
| ``` | |
| ### Test File: `tests/unit/tools/test_search_handler.py` | |
| ```python | |
| """Unit tests for SearchHandler.""" | |
| import pytest | |
| from unittest.mock import AsyncMock | |
| from src.utils.models import Evidence, Citation | |
| from src.utils.exceptions import SearchError | |
| class TestSearchHandler: | |
| """Tests for SearchHandler.""" | |
| @pytest.mark.asyncio | |
| async def test_execute_aggregates_results(self): | |
| """SearchHandler should aggregate results from all tools.""" | |
| from src.tools.search_handler import SearchHandler | |
| # Create mock tools | |
| mock_tool_1 = AsyncMock() | |
| mock_tool_1.name = "mock1" | |
| mock_tool_1.search = AsyncMock(return_value=[ | |
| Evidence( | |
| content="Result 1", | |
| citation=Citation(source="pubmed", title="T1", url="u1", date="2024"), | |
| ) | |
| ]) | |
| mock_tool_2 = AsyncMock() | |
| mock_tool_2.name = "mock2" | |
| mock_tool_2.search = AsyncMock(return_value=[ | |
| Evidence( | |
| content="Result 2", | |
| citation=Citation(source="web", title="T2", url="u2", date="2024"), | |
| ) | |
| ]) | |
| handler = SearchHandler(tools=[mock_tool_1, mock_tool_2]) | |
| result = await handler.execute("test query") | |
| assert result.total_found == 2 | |
| assert "mock1" in result.sources_searched | |
| assert "mock2" in result.sources_searched | |
| assert len(result.errors) == 0 | |
| @pytest.mark.asyncio | |
| async def test_execute_handles_tool_failure(self): | |
| """SearchHandler should continue if one tool fails.""" | |
| from src.tools.search_handler import SearchHandler | |
| mock_tool_ok = AsyncMock() | |
| mock_tool_ok.name = "ok_tool" | |
| mock_tool_ok.search = AsyncMock(return_value=[ | |
| Evidence( | |
| content="Good result", | |
| citation=Citation(source="pubmed", title="T", url="u", date="2024"), | |
| ) | |
| ]) | |
| mock_tool_fail = AsyncMock() | |
| mock_tool_fail.name = "fail_tool" | |
| mock_tool_fail.search = AsyncMock(side_effect=SearchError("API down")) | |
| handler = SearchHandler(tools=[mock_tool_ok, mock_tool_fail]) | |
| result = await handler.execute("test") | |
| assert result.total_found == 1 | |
| assert "ok_tool" in result.sources_searched | |
| assert len(result.errors) == 1 | |
| assert "fail_tool" in result.errors[0] | |
| ``` | |
| --- | |
| ## 7. Integration Test (Optional, Real API) | |
| ```python | |
| # tests/integration/test_pubmed_live.py | |
| """Integration tests that hit real APIs (run manually).""" | |
| import pytest | |
| @pytest.mark.integration | |
| @pytest.mark.slow | |
| @pytest.mark.asyncio | |
| async def test_pubmed_live_search(): | |
| """Test real PubMed search (requires network).""" | |
| from src.tools.pubmed import PubMedTool | |
| tool = PubMedTool() | |
| results = await tool.search("metformin diabetes", max_results=3) | |
| assert len(results) > 0 | |
| assert results[0].citation.source == "pubmed" | |
| assert "pubmed.ncbi.nlm.nih.gov" in results[0].citation.url | |
| # Run with: uv run pytest tests/integration -m integration | |
| ``` | |
| --- | |
| ## 8. Implementation Checklist | |
| - [x] Create `src/utils/models.py` with all Pydantic models (Evidence, Citation, SearchResult) - **COMPLETE** | |
| - [x] Create `src/tools/__init__.py` with SearchTool Protocol and exports - **COMPLETE** | |
| - [x] Implement `src/tools/pubmed.py` with PubMedTool class - **COMPLETE** | |
| - [ ] ~~Implement `src/tools/websearch.py` with WebTool class~~ - **REMOVED** (replaced by Europe PMC in Phase 11) | |
| - [x] Create `src/tools/search_handler.py` with SearchHandler class - **COMPLETE** | |
| - [x] Write tests in `tests/unit/tools/test_pubmed.py` - **COMPLETE** (basic tests) | |
| - [ ] Write tests in `tests/unit/tools/test_websearch.py` - **N/A** (WebTool removed) | |
| - [x] Write tests in `tests/unit/tools/test_search_handler.py` - **COMPLETE** (basic tests) | |
| - [x] Run `uv run pytest tests/unit/tools/ -v` β **ALL TESTS MUST PASS** - **PASSING** | |
| - [ ] (Optional) Run integration test: `uv run pytest -m integration` | |
| - [ ] Add edge case tests (rate limiting, error handling, timeouts) - **PENDING** | |
| - [ ] Commit: `git commit -m "feat: phase 2 search slice complete"` - **DONE** | |
| **Post-Phase 2 Enhancements**: | |
| - [x] Query preprocessing (`src/tools/query_utils.py`) - **ADDED** | |
| - [x] Europe PMC tool (Phase 11) - **ADDED** | |
| - [x] ClinicalTrials tool (Phase 10) - **ADDED** | |
| --- | |
| ## 9. Definition of Done | |
| Phase 2 is **COMPLETE** when: | |
| 1. β All unit tests pass: `uv run pytest tests/unit/tools/ -v` - **PASSING** | |
| 2. β `SearchHandler` can execute with search tools - **WORKING** | |
| 3. β Graceful degradation: if one tool fails, other tools still return results - **IMPLEMENTED** | |
| 4. β Rate limiting is enforced (verify no 429 errors) - **IMPLEMENTED** | |
| 5. β Can run this in Python REPL: | |
| ```python | |
| import asyncio | |
| from src.tools.pubmed import PubMedTool | |
| from src.tools.search_handler import SearchHandler | |
| async def test(): | |
| handler = SearchHandler([PubMedTool()]) | |
| result = await handler.execute("metformin alzheimer") | |
| print(f"Found {result.total_found} results") | |
| for e in result.evidence[:3]: | |
| print(f"- {e.citation.title}") | |
| asyncio.run(test()) | |
| ``` | |
| **Note**: WebTool was removed in favor of Europe PMC (Phase 11). The current implementation uses PubMed as the primary Phase 2 tool, with Europe PMC and ClinicalTrials added in later phases. | |
| **Proceed to Phase 3 ONLY after all checkboxes are complete.** | |