SceneWeaver / quality_checker.py
DawnC's picture
Upload 10 files
ca80d1d verified
raw
history blame
14.2 kB
import logging
import numpy as np
import cv2
from PIL import Image
from typing import Dict, Any, Tuple, Optional
from dataclasses import dataclass
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@dataclass
class QualityResult:
"""Result of a quality check."""
score: float # 0-100
passed: bool
issue: str
details: Dict[str, Any]
class QualityChecker:
"""
Automated quality validation system for generated images.
Provides checks for mask coverage, edge continuity, and color harmony.
"""
# Quality thresholds
THRESHOLD_PASS = 70
THRESHOLD_WARNING = 50
def __init__(self, strictness: str = "standard"):
"""
Initialize QualityChecker.
Args:
strictness: Quality check strictness level
"lenient" - Only check fatal issues
"standard" - All checks with moderate thresholds
"strict" - High standards required
"""
self.strictness = strictness
self._set_thresholds()
def _set_thresholds(self):
"""Set quality thresholds based on strictness level."""
if self.strictness == "lenient":
self.min_coverage = 0.03 # 3%
self.min_edge_score = 40
self.min_harmony_score = 40
elif self.strictness == "strict":
self.min_coverage = 0.10 # 10%
self.min_edge_score = 75
self.min_harmony_score = 75
else: # standard
self.min_coverage = 0.05 # 5%
self.min_edge_score = 60
self.min_harmony_score = 60
def check_mask_coverage(self, mask: Image.Image) -> QualityResult:
"""
Verify mask coverage is adequate.
Args:
mask: Grayscale mask image (L mode)
Returns:
QualityResult with coverage analysis
"""
try:
mask_array = np.array(mask.convert('L'))
height, width = mask_array.shape
total_pixels = height * width
# Count foreground pixels
fg_pixels = np.count_nonzero(mask_array > 127)
coverage_ratio = fg_pixels / total_pixels
# Check for isolated small regions (noise)
_, binary = cv2.threshold(mask_array, 127, 255, cv2.THRESH_BINARY)
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary, connectivity=8)
# Count significant regions (> 1% of image)
min_region_size = total_pixels * 0.01
significant_regions = sum(1 for i in range(1, num_labels)
if stats[i, cv2.CC_STAT_AREA] > min_region_size)
# Calculate fragmentation (many small regions = bad)
fragmentation_penalty = max(0, (num_labels - 1 - significant_regions) * 2)
# Score calculation
coverage_score = min(100, coverage_ratio * 200) # 50% coverage = 100 score
final_score = max(0, coverage_score - fragmentation_penalty)
# Determine pass/fail
passed = coverage_ratio >= self.min_coverage and significant_regions >= 1
issue = ""
if coverage_ratio < self.min_coverage:
issue = f"Low foreground coverage ({coverage_ratio:.1%})"
elif significant_regions == 0:
issue = "No significant foreground regions detected"
elif fragmentation_penalty > 20:
issue = f"Fragmented mask with {num_labels - 1} isolated regions"
return QualityResult(
score=final_score,
passed=passed,
issue=issue,
details={
"coverage_ratio": coverage_ratio,
"foreground_pixels": fg_pixels,
"total_regions": num_labels - 1,
"significant_regions": significant_regions
}
)
except Exception as e:
logger.error(f"❌ Mask coverage check failed: {e}")
return QualityResult(score=0, passed=False, issue=str(e), details={})
def check_edge_continuity(self, mask: Image.Image) -> QualityResult:
"""
Check if mask edges are continuous and smooth.
Args:
mask: Grayscale mask image
Returns:
QualityResult with edge analysis
"""
try:
mask_array = np.array(mask.convert('L'))
# Find edges using morphological gradient
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
gradient = cv2.morphologyEx(mask_array, cv2.MORPH_GRADIENT, kernel)
# Get edge pixels
edge_pixels = gradient > 20
edge_count = np.count_nonzero(edge_pixels)
if edge_count == 0:
return QualityResult(
score=50,
passed=False,
issue="No edges detected in mask",
details={"edge_count": 0}
)
# Check edge smoothness using Laplacian
laplacian = cv2.Laplacian(mask_array, cv2.CV_64F)
edge_laplacian = np.abs(laplacian[edge_pixels])
# High Laplacian values indicate jagged edges
smoothness = 100 - min(100, np.std(edge_laplacian) * 0.5)
# Check for gaps in edges
# Dilate and erode to find disconnections
dilated = cv2.dilate(gradient, kernel, iterations=1)
eroded = cv2.erode(dilated, kernel, iterations=1)
gaps = cv2.subtract(dilated, eroded)
gap_ratio = np.count_nonzero(gaps) / max(edge_count, 1)
# Calculate final score
gap_penalty = min(40, gap_ratio * 100)
final_score = max(0, smoothness - gap_penalty)
passed = final_score >= self.min_edge_score
issue = ""
if final_score < self.min_edge_score:
if smoothness < 60:
issue = "Jagged or rough edges detected"
elif gap_ratio > 0.3:
issue = "Discontinuous edges with gaps"
else:
issue = "Poor edge quality"
return QualityResult(
score=final_score,
passed=passed,
issue=issue,
details={
"edge_count": edge_count,
"smoothness": smoothness,
"gap_ratio": gap_ratio
}
)
except Exception as e:
logger.error(f"❌ Edge continuity check failed: {e}")
return QualityResult(score=0, passed=False, issue=str(e), details={})
def check_color_harmony(
self,
foreground: Image.Image,
background: Image.Image,
mask: Image.Image
) -> QualityResult:
"""
Evaluate color harmony between foreground and background.
Args:
foreground: Original foreground image
background: Generated background image
mask: Combination mask
Returns:
QualityResult with harmony analysis
"""
try:
fg_array = np.array(foreground.convert('RGB'))
bg_array = np.array(background.convert('RGB'))
mask_array = np.array(mask.convert('L'))
# Get foreground and background regions
fg_region = mask_array > 127
bg_region = mask_array <= 127
if not np.any(fg_region) or not np.any(bg_region):
return QualityResult(
score=50,
passed=True,
issue="Cannot analyze harmony - insufficient regions",
details={}
)
# Convert to LAB for perceptual analysis
fg_lab = cv2.cvtColor(fg_array, cv2.COLOR_RGB2LAB).astype(np.float32)
bg_lab = cv2.cvtColor(bg_array, cv2.COLOR_RGB2LAB).astype(np.float32)
# Calculate average colors
fg_avg_l = np.mean(fg_lab[fg_region, 0])
fg_avg_a = np.mean(fg_lab[fg_region, 1])
fg_avg_b = np.mean(fg_lab[fg_region, 2])
bg_avg_l = np.mean(bg_lab[bg_region, 0])
bg_avg_a = np.mean(bg_lab[bg_region, 1])
bg_avg_b = np.mean(bg_lab[bg_region, 2])
# Calculate color differences
delta_l = abs(fg_avg_l - bg_avg_l)
delta_a = abs(fg_avg_a - bg_avg_a)
delta_b = abs(fg_avg_b - bg_avg_b)
# Overall color difference (Delta E approximation)
delta_e = np.sqrt(delta_l**2 + delta_a**2 + delta_b**2)
# Score calculation
# Moderate difference is good (20-60 Delta E)
# Too similar or too different is problematic
if delta_e < 10:
harmony_score = 60 # Too similar, foreground may get lost
issue = "Foreground and background colors too similar"
elif delta_e > 80:
harmony_score = 50 # Too different, may look unnatural
issue = "High color contrast may look unnatural"
elif 20 <= delta_e <= 60:
harmony_score = 100 # Ideal range
issue = ""
else:
harmony_score = 80
issue = ""
# Check for extreme contrast (very dark fg on very bright bg or vice versa)
brightness_contrast = abs(fg_avg_l - bg_avg_l)
if brightness_contrast > 100:
harmony_score = max(40, harmony_score - 30)
issue = "Extreme brightness contrast between foreground and background"
passed = harmony_score >= self.min_harmony_score
return QualityResult(
score=harmony_score,
passed=passed,
issue=issue,
details={
"delta_e": delta_e,
"delta_l": delta_l,
"delta_a": delta_a,
"delta_b": delta_b,
"fg_luminance": fg_avg_l,
"bg_luminance": bg_avg_l
}
)
except Exception as e:
logger.error(f"❌ Color harmony check failed: {e}")
return QualityResult(score=0, passed=False, issue=str(e), details={})
def run_all_checks(
self,
foreground: Image.Image,
background: Image.Image,
mask: Image.Image,
combined: Optional[Image.Image] = None
) -> Dict[str, Any]:
"""
Run all quality checks and return comprehensive results.
Args:
foreground: Original foreground image
background: Generated background
mask: Combination mask
combined: Final combined image (optional)
Returns:
Dictionary with all check results and overall score
"""
logger.info("🔍 Running quality checks...")
results = {
"checks": {},
"overall_score": 0,
"passed": True,
"warnings": [],
"errors": []
}
# Run individual checks
coverage_result = self.check_mask_coverage(mask)
results["checks"]["mask_coverage"] = {
"score": coverage_result.score,
"passed": coverage_result.passed,
"issue": coverage_result.issue,
"details": coverage_result.details
}
edge_result = self.check_edge_continuity(mask)
results["checks"]["edge_continuity"] = {
"score": edge_result.score,
"passed": edge_result.passed,
"issue": edge_result.issue,
"details": edge_result.details
}
harmony_result = self.check_color_harmony(foreground, background, mask)
results["checks"]["color_harmony"] = {
"score": harmony_result.score,
"passed": harmony_result.passed,
"issue": harmony_result.issue,
"details": harmony_result.details
}
# Calculate overall score (weighted average)
weights = {
"mask_coverage": 0.4,
"edge_continuity": 0.3,
"color_harmony": 0.3
}
total_score = (
coverage_result.score * weights["mask_coverage"] +
edge_result.score * weights["edge_continuity"] +
harmony_result.score * weights["color_harmony"]
)
results["overall_score"] = round(total_score, 1)
# Determine overall pass/fail
results["passed"] = all([
coverage_result.passed,
edge_result.passed,
harmony_result.passed
])
# Collect warnings and errors
for check_name, check_data in results["checks"].items():
if check_data["issue"]:
if check_data["passed"]:
results["warnings"].append(f"{check_name}: {check_data['issue']}")
else:
results["errors"].append(f"{check_name}: {check_data['issue']}")
logger.info(f"📊 Quality check complete - Score: {results['overall_score']}, Passed: {results['passed']}")
return results
def get_quality_summary(self, results: Dict[str, Any]) -> str:
"""
Generate human-readable quality summary.
Args:
results: Results from run_all_checks
Returns:
Summary string
"""
score = results["overall_score"]
passed = results["passed"]
if score >= 90:
grade = "Excellent"
elif score >= 75:
grade = "Good"
elif score >= 60:
grade = "Acceptable"
elif score >= 40:
grade = "Needs Improvement"
else:
grade = "Poor"
summary = f"Quality: {grade} ({score:.0f}/100)"
if results["errors"]:
summary += f"\nIssues: {'; '.join(results['errors'])}"
elif results["warnings"]:
summary += f"\nNotes: {'; '.join(results['warnings'])}"
return summary