Spaces:
Runtime error
Runtime error
File size: 5,492 Bytes
c185beb efadf48 c185beb efadf48 c185beb efadf48 c185beb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import numpy as np
import cv2
import nibabel as nib
from PIL import Image
import io
import matplotlib.pyplot as plt
import gradio as gr
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("duzduran/NeuroNest3D")
# Constants
IMG_SIZE = 128
VOLUME_SLICES = 100
VOLUME_START_AT = 22
SEGMENT_CLASSES = ['NOT tumor', 'ENHANCING', 'CORE', 'WHOLE']
def predictByPath(flair, ce):
X = np.empty((VOLUME_SLICES, IMG_SIZE, IMG_SIZE, 2))
for j in range(VOLUME_SLICES):
X[j, :, :, 0] = cv2.resize(flair[:, :, j + VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))
X[j, :, :, 1] = cv2.resize(ce[:, :, j + VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))
# Normalize and make predictions
X_normalized = X / np.max(X)
return model.predict(X_normalized, verbose=1)
def create_subplot_image(origImage, gt, predictions, slice_index, start_at, img_size):
plt.figure(figsize=(18, 10))
f, axarr = plt.subplots(1, 6, figsize=(18, 10))
for i in range(6):
axarr[i].imshow(cv2.resize(origImage[:, :, slice_index + start_at], (img_size, img_size)), cmap="gray",
interpolation='none')
# Original image flair
axarr[0].title.set_text('Original image flair')
# Ground truth
curr_gt = cv2.resize(gt[:, :, slice_index + start_at], (img_size, img_size), interpolation=cv2.INTER_NEAREST)
axarr[1].imshow(curr_gt, cmap="Reds", interpolation='none', alpha=0.3)
axarr[1].title.set_text('Ground truth')
# All classes
axarr[2].imshow(predictions[slice_index, :, :, 1:4], cmap="Reds", interpolation='none', alpha=0.3)
axarr[2].title.set_text('All classes')
SEGMENT_CLASSES
# Class-specific predictions
for i in range(1, 4): # Adjusted to loop over the available prediction classes
axarr[i + 2].imshow(predictions[slice_index, :, :, i], cmap="OrRd", interpolation='none', alpha=0.3)
axarr[i + 2].title.set_text(f'{SEGMENT_CLASSES[i]} predicted')
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(f)
buf.seek(0)
img = Image.open(buf)
return img
examples = {
"Example 1": {"flair": "examples/ex_1/BraTS20_Training_001_flair.nii",
"t1ce": "examples/ex_1/BraTS20_Training_001_t1ce.nii",
"seg": "examples/ex_1/BraTS20_Training_001_seg.nii"},
"Example 2": {"flair": "examples/ex_2/BraTS20_Training_002_flair.nii",
"t1ce": "examples/ex_2/BraTS20_Training_002_t1ce.nii",
"seg": "examples/ex_2/BraTS20_Training_002_seg.nii"},
}
def automatic_process(example_key):
paths = examples[example_key]
print(paths["flair"])
flair = nib.load(paths["flair"]).get_fdata()
t1ce = nib.load(paths["t1ce"]).get_fdata()
seg = nib.load(paths["seg"]).get_fdata()
# Default slice index
slice_index = 50
return process_and_display_direct(flair, t1ce, seg, slice_index)
def process_and_display_direct(flair_data, t1ce_data, seg_data, slice_index):
flair = np.array(flair_data)
t1ce = np.array(t1ce_data)
seg = np.array(seg_data)
p = predictByPath(flair, t1ce)
# Create the subplot image
subplot_img = create_subplot_image(flair, seg, p, slice_index, VOLUME_START_AT, IMG_SIZE)
return subplot_img
def process_and_display(flair_file, t1ce_file, seg_file, slice_index):
if not flair_file or not t1ce_file or not seg_file:
return None # Ensure all files are uploaded
flair = nib.load(flair_file.name).get_fdata()
t1ce = nib.load(t1ce_file.name).get_fdata()
gt = nib.load(seg_file.name).get_fdata()
p = predictByPath(flair, t1ce)
# Create the subplot image
subplot_img = create_subplot_image(flair, gt, p, slice_index, VOLUME_START_AT, IMG_SIZE)
return subplot_img
title = "<center><strong><font size='8'>Open-Vocabulary SAM<font></strong></center>"
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
# Gradio Interface
with gr.Blocks(css=css, title="Tumor Segmentation") as demo:
gr.Markdown(
"""
<p style="text-align: center; font-size: 24px;">MRI Brain Tumor Segmentation</p>
<p style="text-align: center;">made by Ahmet Duzduran</p>
### <p style="text-align: left;">Faculty: Faculty of Computer Science</p>
### <p style="text-align: left;">Specialization: Intelligent Systems and Data Science</p>
### <p style="text-align: left;">Supervisor: Wojciech Oronowicz, PhD, Prof. Of PJATK</p>
"""
)
with gr.Row():
flair_input = gr.File(label="Upload Flair NIfTI File")
t1ce_input = gr.File(label="Upload T1ce NIfTI File")
seg_input = gr.File(label="Upload Seg NIfTI File")
slice_input = gr.Slider(minimum=0, maximum=VOLUME_SLICES - 1, label="Slice Index")
# eval_class_input = gr.Dropdown(choices=list(range(len(SEGMENT_CLASSES))), label="Select Class")
submit_button = gr.Button("Submit")
with gr.Row():
example_selector = gr.Dropdown(list(examples.keys()), label="Select Example")
auto_button = gr.Button("Load Example")
output_image = gr.Image(label="Visualization")
submit_button.click(
process_and_display,
inputs=[flair_input, t1ce_input, seg_input, slice_input],
outputs=output_image
)
auto_button.click(
automatic_process,
inputs=[example_selector],
outputs=output_image
)
demo.launch()
|