File size: 5,492 Bytes
c185beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efadf48
 
 
c185beb
efadf48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c185beb
 
 
 
 
efadf48
c185beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import cv2
import nibabel as nib
from PIL import Image
import io
import matplotlib.pyplot as plt
import gradio as gr

from huggingface_hub import from_pretrained_keras

model = from_pretrained_keras("duzduran/NeuroNest3D")
# Constants
IMG_SIZE = 128
VOLUME_SLICES = 100
VOLUME_START_AT = 22
SEGMENT_CLASSES = ['NOT tumor', 'ENHANCING', 'CORE', 'WHOLE']


def predictByPath(flair, ce):
    X = np.empty((VOLUME_SLICES, IMG_SIZE, IMG_SIZE, 2))

    for j in range(VOLUME_SLICES):
        X[j, :, :, 0] = cv2.resize(flair[:, :, j + VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))
        X[j, :, :, 1] = cv2.resize(ce[:, :, j + VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))

    # Normalize and make predictions
    X_normalized = X / np.max(X)
    return model.predict(X_normalized, verbose=1)


def create_subplot_image(origImage, gt, predictions, slice_index, start_at, img_size):
    plt.figure(figsize=(18, 10))
    f, axarr = plt.subplots(1, 6, figsize=(18, 10))

    for i in range(6):
        axarr[i].imshow(cv2.resize(origImage[:, :, slice_index + start_at], (img_size, img_size)), cmap="gray",
                        interpolation='none')

    # Original image flair
    axarr[0].title.set_text('Original image flair')

    # Ground truth
    curr_gt = cv2.resize(gt[:, :, slice_index + start_at], (img_size, img_size), interpolation=cv2.INTER_NEAREST)
    axarr[1].imshow(curr_gt, cmap="Reds", interpolation='none', alpha=0.3)
    axarr[1].title.set_text('Ground truth')

    # All classes
    axarr[2].imshow(predictions[slice_index, :, :, 1:4], cmap="Reds", interpolation='none', alpha=0.3)
    axarr[2].title.set_text('All classes')

    SEGMENT_CLASSES
    # Class-specific predictions
    for i in range(1, 4):  # Adjusted to loop over the available prediction classes
        axarr[i + 2].imshow(predictions[slice_index, :, :, i], cmap="OrRd", interpolation='none', alpha=0.3)
        axarr[i + 2].title.set_text(f'{SEGMENT_CLASSES[i]} predicted')

    # Convert plot to image
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    plt.close(f)
    buf.seek(0)
    img = Image.open(buf)
    return img


examples = {
    "Example 1": {"flair": "examples/ex_1/BraTS20_Training_001_flair.nii",
                  "t1ce": "examples/ex_1/BraTS20_Training_001_t1ce.nii",
                  "seg": "examples/ex_1/BraTS20_Training_001_seg.nii"},

    "Example 2": {"flair": "examples/ex_2/BraTS20_Training_002_flair.nii",
                  "t1ce": "examples/ex_2/BraTS20_Training_002_t1ce.nii",
                  "seg": "examples/ex_2/BraTS20_Training_002_seg.nii"},
}


def automatic_process(example_key):
    paths = examples[example_key]
    print(paths["flair"])

    flair = nib.load(paths["flair"]).get_fdata()
    t1ce = nib.load(paths["t1ce"]).get_fdata()
    seg = nib.load(paths["seg"]).get_fdata()

    # Default slice index
    slice_index = 50

    return process_and_display_direct(flair, t1ce, seg, slice_index)


def process_and_display_direct(flair_data, t1ce_data, seg_data, slice_index):
    flair = np.array(flair_data)
    t1ce = np.array(t1ce_data)
    seg = np.array(seg_data)

    p = predictByPath(flair, t1ce)

    # Create the subplot image
    subplot_img = create_subplot_image(flair, seg, p, slice_index, VOLUME_START_AT, IMG_SIZE)

    return subplot_img


def process_and_display(flair_file, t1ce_file, seg_file, slice_index):
    if not flair_file or not t1ce_file or not seg_file:
        return None  # Ensure all files are uploaded

    flair = nib.load(flair_file.name).get_fdata()
    t1ce = nib.load(t1ce_file.name).get_fdata()
    gt = nib.load(seg_file.name).get_fdata()

    p = predictByPath(flair, t1ce)

    # Create the subplot image
    subplot_img = create_subplot_image(flair, gt, p, slice_index, VOLUME_START_AT, IMG_SIZE)

    return subplot_img


title = "<center><strong><font size='8'>Open-Vocabulary SAM<font></strong></center>"
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"

# Gradio Interface
with gr.Blocks(css=css, title="Tumor Segmentation") as demo:
    gr.Markdown(
        """
                
<p style="text-align: center; font-size: 24px;">MRI Brain Tumor Segmentation</p>

<p style="text-align: center;">made by Ahmet Duzduran</p>


### <p style="text-align: left;">Faculty: Faculty of Computer Science</p>

### <p style="text-align: left;">Specialization: Intelligent Systems and Data Science</p>

### <p style="text-align: left;">Supervisor: Wojciech Oronowicz, PhD, Prof. Of PJATK</p>

        """
    )
    with gr.Row():
        flair_input = gr.File(label="Upload Flair NIfTI File")
        t1ce_input = gr.File(label="Upload T1ce NIfTI File")
        seg_input = gr.File(label="Upload Seg NIfTI File")
        slice_input = gr.Slider(minimum=0, maximum=VOLUME_SLICES - 1, label="Slice Index")
        # eval_class_input = gr.Dropdown(choices=list(range(len(SEGMENT_CLASSES))), label="Select Class")
        submit_button = gr.Button("Submit")

    with gr.Row():
        example_selector = gr.Dropdown(list(examples.keys()), label="Select Example")
        auto_button = gr.Button("Load Example")

    output_image = gr.Image(label="Visualization")

    submit_button.click(
        process_and_display,
        inputs=[flair_input, t1ce_input, seg_input, slice_input],
        outputs=output_image
    )

    auto_button.click(
        automatic_process,
        inputs=[example_selector],
        outputs=output_image
    )

demo.launch()