Der11 / app.py
Derr11's picture
Update app.py
3b87138 verified
raw
history blame
12.9 kB
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
import warnings
warnings.filterwarnings("ignore")
# =========================================================
# إعدادات النموذج
# =========================================================
MODEL_ID = "openbmb/MiniCPM-o-2_6"
# تحميل كسول للنموذج
model = None
tokenizer = None
def load_model():
"""تحميل النموذج عند الحاجة فقط"""
global model, tokenizer
if model is not None:
return
print(f"Loading {MODEL_ID}...")
# استخدام float16 للتوافق مع ZeroGPU
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
try:
# تحميل tokenizer أولاً
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True,
use_fast=False
)
# تحميل النموذج مع trust_remote_code=True
model = AutoModel.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=dtype,
low_cpu_mem_usage=True,
attn_implementation="eager",
).eval()
if torch.cuda.is_available():
model = model.cuda()
print("Model loaded successfully!")
except Exception as e:
print(f"Error with AutoModel, trying AutoModelForCausalLM: {e}")
# محاولة بديلة مع AutoModelForCausalLM
try:
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True, # مهم جداً!
torch_dtype=dtype,
low_cpu_mem_usage=True,
attn_implementation="eager"
).eval()
if torch.cuda.is_available():
model = model.cuda()
print("Model loaded successfully with AutoModelForCausalLM!")
except Exception as e2:
print(f"Failed to load model: {e2}")
raise RuntimeError(f"Could not load model: {e2}")
# =========================================================
# دالة معالجة الصور
# =========================================================
def process_image(image_input):
"""معالجة الصورة للنموذج"""
if image_input is None:
return None
if isinstance(image_input, str):
return Image.open(image_input).convert('RGB')
else:
return image_input.convert('RGB')
# =========================================================
# دالة الاستدلال مع ZeroGPU
# =========================================================
@spaces.GPU(duration=60)
def generate_response(
text_input,
image_input,
temperature,
top_p,
max_new_tokens
):
"""
معالجة النص والصور باستخدام MiniCPM-o-2_6
"""
if not text_input and not image_input:
return "Please provide text or image input."
try:
load_model()
global model, tokenizer
# إعداد المدخلات
if image_input is not None:
# معالجة الصورة + النص
image = process_image(image_input)
if not text_input:
text_input = "What is shown in this image? Please describe in detail."
# التحقق من وجود دالة chat في النموذج
if hasattr(model, 'chat'):
try:
# استخدام دالة chat المخصصة
msgs = [{"role": "user", "content": [image, text_input]}]
with torch.no_grad():
response = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens
)
return response
except Exception as e:
print(f"Chat method failed: {e}")
# السقوط إلى الطريقة العادية
# الطريقة البديلة للصور
# دمج النص مع وصف الصورة
prompt = f"Image: [Image will be processed]\n\nQuestion: {text_input}\n\nAnswer:"
else:
# نص فقط
prompt = text_input
# المعالجة العادية للنص
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048
)
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items() if v is not None}
# إعدادات التوليد
gen_kwargs = {
"max_new_tokens": max_new_tokens,
"temperature": temperature if temperature > 0 else 1e-7,
"top_p": top_p,
"do_sample": temperature > 0,
"pad_token_id": tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
}
# التوليد
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
# فك التشفير
response = tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return response.strip()
except Exception as e:
import traceback
traceback.print_exc()
return f"Error: {str(e)}"
# =========================================================
# دوال مساعدة للواجهة
# =========================================================
def clear_all():
"""مسح جميع المدخلات والمخرجات"""
return "", None, ""
def update_examples_visibility(show_examples):
"""تحديث رؤية الأمثلة"""
return gr.update(visible=show_examples)
# =========================================================
# واجهة Gradio
# =========================================================
def create_demo():
"""إنشاء واجهة Gradio البسيطة"""
with gr.Blocks(title="MiniCPM-o-2.6", css="""
.gradio-container {
max-width: 1200px;
margin: auto;
}
h1 {
text-align: center;
}
.contain {
background: white;
border-radius: 10px;
padding: 20px;
}
""") as demo:
gr.Markdown(
"""
# 🤖 MiniCPM-o-2.6 - Multimodal AI Assistant
<div style="text-align: center;">
<p>
<b>8B parameters model</b> with GPT-4 level performance<br>
Supports: Text Generation, Image Understanding, OCR, and Multi-lingual conversations
</p>
</div>
"""
)
with gr.Row():
# العمود الرئيسي
with gr.Column(scale=2):
with gr.Group():
text_input = gr.Textbox(
label="💭 Text Input",
placeholder="Enter your question or prompt here...\nYou can ask about images, request text generation, or have a conversation.",
lines=4,
elem_id="text_input"
)
image_input = gr.Image(
label="📷 Image Input (Optional)",
type="pil",
elem_id="image_input"
)
with gr.Row():
submit_btn = gr.Button(
"🚀 Generate Response",
variant="primary",
scale=2
)
clear_btn = gr.Button(
"🗑️ Clear All",
variant="secondary",
scale=1
)
output = gr.Textbox(
label="🤖 AI Response",
lines=10,
interactive=False,
elem_id="output"
)
# عمود الإعدادات
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### ⚙️ Generation Settings")
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.5,
value=0.7,
step=0.1,
info="Controls randomness (0=deterministic, 1.5=very creative)"
)
top_p = gr.Slider(
label="Top-p (Nucleus Sampling)",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
info="Controls diversity of output"
)
max_new_tokens = gr.Slider(
label="Max New Tokens",
minimum=50,
maximum=2048,
value=512,
step=50,
info="Maximum length of generated response"
)
gr.Markdown(
"""
### 📚 Quick Tips:
**Text Generation:**
- Ask questions
- Request explanations
- Generate creative content
**Image Understanding:**
- Upload an image
- Ask about contents
- Request OCR/text extraction
- Get detailed descriptions
**Languages:**
- English, Chinese, Arabic
- And many more!
"""
)
# أمثلة
with gr.Group():
gr.Markdown("### 💡 Example Prompts")
gr.Examples(
examples=[
["Explain quantum computing in simple terms for a beginner.", None],
["Write a short story about a robot learning to paint.", None],
["What are the main differences between Python and JavaScript?", None],
["Create a healthy meal plan for one week.", None],
["Translate 'Hello, how are you?' to French, Spanish, and Arabic.", None],
],
inputs=[text_input, image_input],
outputs=output,
fn=lambda t, i: generate_response(t, i, 0.7, 0.9, 512),
cache_examples=False,
label="Click any example to try it"
)
# ربط الأحداث
submit_btn.click(
fn=generate_response,
inputs=[text_input, image_input, temperature, top_p, max_new_tokens],
outputs=output,
api_name="generate"
)
text_input.submit(
fn=generate_response,
inputs=[text_input, image_input, temperature, top_p, max_new_tokens],
outputs=output
)
clear_btn.click(
fn=clear_all,
inputs=[],
outputs=[text_input, image_input, output]
)
# رسالة ترحيبية عند التحميل
demo.load(
lambda: gr.Info("Model is loading... This may take a moment on first use."),
inputs=None,
outputs=None
)
return demo
# =========================================================
# تشغيل التطبيق
# =========================================================
if __name__ == "__main__":
demo = create_demo()
demo.launch(
ssr_mode=False,
show_error=True,
share=False
)