Spaces:
Sleeping
Sleeping
File size: 30,976 Bytes
a211075 008d586 187181f 008d586 187181f a211075 187181f 008d586 187181f a211075 187181f a211075 187181f a211075 008d586 23e9bac 008d586 23e9bac a211075 008d586 23e9bac 008d586 187181f 008d586 23e9bac 008d586 a211075 008d586 0d1305c aebbb79 23e9bac 0d1305c 187181f 008d586 a211075 008d586 05de376 afa352c 420bb89 a211075 420bb89 23e9bac 008d586 187181f 008d586 a211075 23e9bac 008d586 a211075 008d586 187181f 23e9bac a211075 23e9bac 008d586 0d1305c 187181f 008d586 a211075 008d586 0d1305c 008d586 a211075 008d586 a211075 008d586 a211075 008d586 187181f 23e9bac a211075 0d1305c a211075 23e9bac 008d586 a211075 008d586 23e9bac 008d586 23e9bac a211075 23e9bac 008d586 23e9bac 008d586 a211075 008d586 a211075 23e9bac 008d586 a211075 23e9bac a211075 23e9bac 0d1305c 23e9bac 0d1305c a211075 0d1305c a211075 0d1305c a211075 23e9bac 008d586 a211075 23e9bac 008d586 a211075 008d586 187181f 008d586 a211075 008d586 a211075 008d586 a211075 008d586 187181f 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 eae1e4c a211075 eae1e4c 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 2a361d1 a211075 008d586 a211075 0d1305c a211075 008d586 a211075 0d1305c a211075 187181f a211075 0d1305c a211075 0d1305c a211075 008d586 a211075 008d586 a211075 187181f a211075 187181f a211075 187181f a211075 0d1305c a211075 23e9bac a211075 0d1305c a211075 0d1305c a211075 008d586 a211075 23e9bac 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 008d586 a211075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
# app.py (HF Spaces CPU-Optimized)
# RAG sekolah super hemat CPU:
# - Default model: 3B instruct (GGUF) + ctx 1024
# - Retrieval cepat: FAISS top-12 → pilih kalimat pakai lexical overlap (tanpa encode per-kalimat)
# - Encoder dipakai HANYA untuk query & FAISS (1x per request)
# - Jawaban final lewat <final>...</final>, stop di </final>, retry kalau kosong/ellipsis
# - Admin + Auth Postgres tetap sama
import os, json, re, time, logging
from functools import lru_cache, wraps
from typing import Dict, List, Tuple
from dataclasses import dataclass
from datetime import datetime
from zoneinfo import ZoneInfo
from pathlib import Path
from flask import (
Flask, render_template, request, redirect, url_for, session, jsonify, flash
)
import numpy as np
import faiss
import torch
from transformers import AutoTokenizer, AutoModel
from dotenv import load_dotenv
load_dotenv()
# ========= ENV & LOGGING =========
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "TRUE")
os.environ.setdefault("OMP_NUM_THREADS", "1")
try:
torch.set_num_threads(int(os.environ.get("NUM_THREADS", "3"))) # 3 thread cukup di CPU Spaces
torch.set_num_interop_threads(1)
except Exception:
pass
logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
log = logging.getLogger("rag-app")
# ========= IMPORT EKSTERNAL (wrapper & guardrail) =========
from Guardrail import validate_input # -> bool
from Model import load_model, generate # -> llama.cpp wrapper
# ========= PATH ROOT =========
BASE_DIR = Path(__file__).resolve().parent
# ========= KONFIG MODEL & RAG (di-tune untuk CPU) =========
GGUF_DEFAULT = "DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf" # kecil & cepat; upload ke /models
MODEL_PATH = str(BASE_DIR / "models" / os.getenv("GGUF_FILENAME", GGUF_DEFAULT))
CTX_WINDOW = int(os.environ.get("CTX_WINDOW", 1024))
N_GPU_LAYERS = int(os.environ.get("N_GPU_LAYERS", 0))
N_THREADS = int(os.environ.get("NUM_THREADS", 3))
ENCODER_NAME = os.environ.get("ENCODER_NAME", "intfloat/multilingual-e5-large")
ENCODER_DEVICE = torch.device("cpu")
# Dataset sudah ada di Space → path RELATIF (samakan dengan struktur kamu)
SUBJECTS: Dict[str, Dict[str, str]] = {
"ipas": {
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Ipas" / "IPA_index.index"),
"chunks": str(BASE_DIR / "Dataset" / "Ipas" / "Chunk" / "ipas_chunks.json"),
"embeddings": str(BASE_DIR / "Dataset" / "Ipas" / "Embedd"/ "ipas_embeddings.npy"),
"label": "IPAS",
"desc": "Ilmu Pengetahuan Alam dan Sosial"
},
"penjas": {
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Penjas" / "PENJAS_index.index"),
"chunks": str(BASE_DIR / "Dataset" / "Penjas" / "Chunk" / "penjas_chunks.json"),
"embeddings": str(BASE_DIR / "Dataset" / "Penjas" / "Embedd" / "penjas_embeddings.npy"),
"label": "PJOK",
"desc": "Pendidikan Jasmani, Olahraga, dan Kesehatan"
},
"pancasila": {
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Pancasila" / "PANCASILA_index.index"),
"chunks": str(BASE_DIR / "Dataset" / "Pancasila" / "Chunk" / "pancasila_chunks.json"),
"embeddings": str(BASE_DIR / "Dataset" / "Pancasila" / "Embedd" / "pancasila_embeddings.npy"),
"label": "PANCASILA",
"desc": "Pendidikan Pancasila dan Kewarganegaraan"
}
}
# ======= Threshold & parameter cepat (sudah dilonggarkan & adaptif) =======
TOP_K_FAISS = int(os.environ.get("TOP_K_FAISS", 15))
TOP_K_FINAL = int(os.environ.get("TOP_K_FINAL", 10))
MIN_COSINE = float(os.environ.get("MIN_COSINE", 0.83)) # dulu 0.83
MIN_LEXICAL = float(os.environ.get("MIN_LEXICAL", 0.10)) # dulu 0.8 → terlalu ketat utk query pendek
FALLBACK_TEXT = os.environ.get("FALLBACK_TEXT", "maap pengetahuan tidak ada dalam database")
GUARDRAIL_BLOCK_TEXT = os.environ.get("GUARDRAIL_BLOCK_TEXT", "maap, pertanyaan ditolak oleh guardrail")
ENABLE_PROFILING = os.environ.get("ENABLE_PROFILING", "false").lower() == "true"
# ========= APP =========
app = Flask(__name__)
app.secret_key = os.environ.get("FLASK_SECRET_KEY", "dev-secret-please-change")
from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1, x_proto=1, x_host=1)
app.config.update(
SESSION_COOKIE_NAME="session",
SESSION_COOKIE_SAMESITE="None",
SESSION_COOKIE_SECURE=True,
SESSION_COOKIE_HTTPONLY=True,
SESSION_COOKIE_PATH="/",
PREFERRED_URL_SCHEME="https",
)
# ========= GLOBALS =========
ENCODER_TOKENIZER = None
ENCODER_MODEL = None
LLM = None
@dataclass(frozen=True)
class SubjectAssets:
index: faiss.Index
texts: List[str]
embs: np.ndarray
# ========= TEKS UTIL =========
STOPWORDS_ID = {
"yang","dan","atau","pada","di","ke","dari","itu","ini","adalah","dengan",
"untuk","serta","sebagai","oleh","dalam","akan","kamu","apa","karena",
"agar","sehingga","terhadap","dapat","juga","para","diri",
}
TOKEN_RE = re.compile(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", re.UNICODE)
@lru_cache(maxsize=4096)
def _tok_cached(word: str) -> str:
return word.lower()
def tok_id(text: str) -> List[str]:
return [tw for w in TOKEN_RE.findall(text or "") if (tw := _tok_cached(w)) not in STOPWORDS_ID]
def lexical_overlap(query: str, sent: str) -> float:
q = set(tok_id(query)); s = set(tok_id(sent))
if not q or not s:
return 0.0
return len(q & s) / max(1, len(q | s))
QUESTION_LIKE_RE = re.compile(r"(^\s*(apa|mengapa|bagaimana|sebutkan|jelaskan)\b|[?]$)", re.IGNORECASE)
# Relaksasi filter instruksi: hanya pola yang benar-benar instruksi tugas di awal kalimat
INSTRUCTION_RE = re.compile(r"^\s*(kerjakan|tugas\s*:|diskusikan|latihan\s*:)\b", re.IGNORECASE)
META_PREFIX_PATTERNS = [
r"berdasarkan\s+(?:kalimat|sumber|teks|konten|informasi)(?:\s+(?:di\s+atas|tersebut))?",
r"menurut\s+(?:sumber|teks|konten)",
r"merujuk\s+pada",
r"mengacu\s+pada",
r"bersumber\s+dari",
r"dari\s+(?:kalimat|sumber|teks|konten)"
]
META_PREFIX_RE = re.compile(r"^\s*(?:" + r"|".join(META_PREFIX_PATTERNS) + r")\s*[:\-–—,]?\s*", re.IGNORECASE)
def clean_prefix(t: str) -> str:
t = (t or "").strip()
for _ in range(3):
t2 = META_PREFIX_RE.sub("", t).lstrip()
if t2 == t:
break
t = t2
return t
def strip_meta_sentence(s: str) -> str:
s = clean_prefix(s or "")
if re.match(r"^\s*(berdasarkan|menurut|merujuk|mengacu|bersumber|dari)\b", s, re.IGNORECASE):
s = re.sub(r"^\s*[^,.;!?]*[,.;!?]\s*", "", s) or s
s = clean_prefix(s)
return s.strip()
SENT_SPLIT_RE = re.compile(r"(?<=[.!?])\s+")
def split_sentences_fast(text: str) -> List[str]:
outs = []
for p in SENT_SPLIT_RE.split(text or ""):
s = clean_prefix((p or "").strip())
if not s:
continue
# Opsi: jika dataset kamu sering tanpa tanda akhir, boleh aktifkan ini:
# if s and s[-1] not in ".!?":
# s += "."
if QUESTION_LIKE_RE.search(s):
continue
if INSTRUCTION_RE.search(s):
continue
if len(s) < 12:
continue
outs.append(s)
return outs
# ========= MODEL WARMUP =========
def warmup_models():
global ENCODER_TOKENIZER, ENCODER_MODEL, LLM
if ENCODER_TOKENIZER is None or ENCODER_MODEL is None:
log.info(f"[INIT] Load encoder: {ENCODER_NAME} (CPU)")
ENCODER_TOKENIZER = AutoTokenizer.from_pretrained(ENCODER_NAME)
ENCODER_MODEL = AutoModel.from_pretrained(ENCODER_NAME).to(ENCODER_DEVICE).eval()
if LLM is None:
log.info(f"[INIT] Load LLM: {MODEL_PATH} | ctx={CTX_WINDOW} | threads={N_THREADS}")
LLM = load_model(MODEL_PATH, n_ctx=CTX_WINDOW, n_gpu_layers=N_GPU_LAYERS, n_threads=N_THREADS)
# ========= ASSETS =========
@lru_cache(maxsize=8)
def load_subject_assets(subject_key: str) -> "SubjectAssets":
if subject_key not in SUBJECTS:
raise ValueError(f"Unknown subject: {subject_key}")
cfg = SUBJECTS[subject_key]
log.info(f"[ASSETS] Loading subject={subject_key} | index={cfg['index']}")
if not os.path.exists(cfg["index"]):
raise FileNotFoundError(cfg["index"])
if not os.path.exists(cfg["chunks"]):
raise FileNotFoundError(cfg["chunks"])
if not os.path.exists(cfg["embeddings"]):
raise FileNotFoundError(cfg["embeddings"])
index = faiss.read_index(cfg["index"])
with open(cfg["chunks"], "r", encoding="utf-8") as f:
texts = [it.get("text", "") for it in json.load(f)]
embs = np.load(cfg["embeddings"]) # (N, dim)
if index.ntotal != len(embs):
raise RuntimeError(f"Mismatch ntotal({index.ntotal}) vs emb({len(embs)})")
return SubjectAssets(index=index, texts=texts, embs=embs)
# ========= ENCODER =========
@torch.inference_mode()
@lru_cache(maxsize=1024)
def encode_query_exact(text: str) -> np.ndarray:
toks = ENCODER_TOKENIZER(text, padding=True, truncation=True, return_tensors="pt").to(ENCODER_DEVICE)
out = ENCODER_MODEL(**toks)
vec = out.last_hidden_state.mean(dim=1)
return vec.cpu().numpy()
def cosine_sim(a: np.ndarray, b: np.ndarray) -> float:
a = np.asarray(a).reshape(-1); b = np.asarray(b).reshape(-1)
denom = (np.linalg.norm(a) * np.linalg.norm(b)) + 1e-12
return float(np.dot(a, b) / denom)
# ========= RETRIEVAL CEPAT =========
def best_cosine_from_faiss(query: str, subject_key: str) -> float:
assets = load_subject_assets(subject_key)
q = encode_query_exact(query)
_, I = assets.index.search(q, TOP_K_FAISS)
qv = q.reshape(-1)
best = -1.0
for i in I[0]:
if 0 <= i < len(assets.texts):
best = max(best, cosine_sim(qv, assets.embs[i]))
return best
def retrieve_top_chunks(query: str, subject_key: str) -> List[str]:
assets = load_subject_assets(subject_key)
q = encode_query_exact(query)
_, idx = assets.index.search(q, TOP_K_FAISS)
idxs = [i for i in idx[0] if 0 <= i < len(assets.texts)]
return [assets.texts[i] for i in idxs[:TOP_K_FINAL]]
# ======= Seleksi kalimat dua-fase (ketat → longgar) =======
def pick_best_sentences_fast(query: str, chunks: List[str], top_k: int = 4) -> List[str]:
"""
Fase-1: ambil kalimat dg overlap >= MIN_LEXICAL
Fase-2 (fallback): kalau hasil < top_k, ambil kalimat skor tertinggi meski < MIN_LEXICAL
"""
cands: List[Tuple[float, str]] = []
for ch in chunks:
for s in split_sentences_fast(ch):
ovl = lexical_overlap(query, s)
L = len(s)
len_bonus = 0.05 if 50 <= L <= 220 else 0.0
score = ovl + len_bonus
cands.append((score, clean_prefix(s)))
if not cands:
log.info("[RAG] Tidak ada kandidat kalimat (split_sentences menghasilkan 0).")
return []
cands.sort(key=lambda x: x[0], reverse=True)
strict = [s for sc, s in cands if sc + 1e-6 >= MIN_LEXICAL]
if len(strict) >= top_k:
return strict[:top_k]
log.info(f"[RAG] Kalimat relevan < {top_k} pada MIN_LEXICAL={MIN_LEXICAL}; fallback longgar dipakai.")
return [s for _, s in cands[:top_k]]
# ========= PROMPT =========
def build_prompt(user_query: str, sentences: List[str]) -> str:
block = "\n".join(f"- {clean_prefix(s)}" for s in sentences)
system = (
"Kamu asisten RAG.\n"
f"- Jika tidak ada kalimat yang relevan, tulis persis: {FALLBACK_TEXT}\n"
"- Jawab TEPAT 1 kalimat, ringkas, Bahasa Indonesia baku (≥ 6 kata).\n"
"- Tanpa frasa meta (berdasarkan/menurut/merujuk/mengacu/bersumber).\n"
"- Tulis jawaban final di dalam tag <final>Jawaban.</final> dan jangan menulis apa pun setelah </final>."
)
fewshot = (
"Contoh format: \n"
"KALIMAT SUMBER:\n- Air memuai saat dipanaskan.\n"
"PERTANYAAN: Apa yang terjadi pada air saat dipanaskan?\n"
"<final>Air akan memuai ketika dipanaskan.</final>\n"
)
return (
f"{system}\n\n{fewshot}\n"
f"KALIMAT SUMBER:\n{block}\n\n"
f"PERTANYAAN: {user_query}\n"
f"TULIS JAWABAN DI DALAM <final>...</final> SAJA:"
)
@lru_cache(maxsize=1024)
def validate_input_cached(q: str) -> bool:
try:
return validate_input(q)
except Exception as e:
log.exception(f"[GUARDRAIL] error: {e}")
return False
# ========= AUTH (POSTGRES) =========
from werkzeug.security import generate_password_hash, check_password_hash
from sqlalchemy import create_engine, Column, Integer, String, Text, Boolean, func, or_
from sqlalchemy.orm import sessionmaker, scoped_session, declarative_base, Session
POSTGRES_URL = os.environ.get("POSTGRES_URL")
if not POSTGRES_URL:
raise RuntimeError("POSTGRES_URL tidak ditemukan. Set di Settings → Variables.")
engine = create_engine(POSTGRES_URL, pool_pre_ping=True, future=True, echo=False)
SessionLocal = scoped_session(sessionmaker(bind=engine, autoflush=False, autocommit=False, future=True))
Base = declarative_base()
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True)
username = Column(String(50), unique=True, nullable=False, index=True)
email = Column(String(120), unique=True, nullable=False, index=True)
password = Column(Text, nullable=False)
is_active = Column(Boolean, default=True, nullable=False)
is_admin = Column(Boolean, default=False, nullable=False)
class ChatHistory(Base):
__tablename__ = "chat_history"
id = Column(Integer, primary_key=True)
user_id = Column(Integer, nullable=False, index=True)
subject_key = Column(String(50), nullable=False, index=True)
role = Column(String(10), nullable=False)
message = Column(Text, nullable=False)
timestamp = Column(Integer, server_default=func.extract("epoch", func.now()))
Base.metadata.create_all(bind=engine)
JKT_TZ = ZoneInfo("Asia/Jakarta")
@app.template_filter("fmt_ts")
def fmt_ts(epoch_int: int):
try:
dt = datetime.fromtimestamp(int(epoch_int), tz=JKT_TZ)
return dt.strftime("%d %b %Y %H:%M")
except Exception:
return "-"
def db():
return SessionLocal()
def login_required(view_func):
@wraps(view_func)
def wrapper(*args, **kwargs):
if not session.get("logged_in"):
return redirect(url_for("auth_login"))
return view_func(*args, **kwargs)
return wrapper
def admin_required(view_func):
@wraps(view_func)
def wrapper(*args, **kwargs):
if not session.get("logged_in"):
return redirect(url_for("auth_login"))
if not session.get("is_admin"):
flash("Hanya admin yang boleh mengakses halaman itu.", "error")
return redirect(url_for("subjects"))
return view_func(*args, **kwargs)
return wrapper
# ========= ROUTES =========
@app.route("/")
def root():
return redirect(url_for("auth_login"))
@app.route("/auth/login", methods=["GET", "POST"])
def auth_login():
if request.method == "POST":
identity = (
request.form.get("identity") or request.form.get("email") or request.form.get("username") or ""
).strip().lower()
pw_input = (request.form.get("password") or "").strip()
if not identity or not pw_input:
flash("Mohon isi email/username dan password.", "error")
return render_template("login.html"), 400
s = db()
try:
user = (
s.query(User)
.filter(or_(func.lower(User.username) == identity, func.lower(User.email) == identity))
.first()
)
log.info(f"[LOGIN] identity='{identity}' found={bool(user)} active={getattr(user,'is_active',None)}")
ok = bool(user and user.is_active and check_password_hash(user.password, pw_input))
finally:
s.close()
if not ok:
flash("Identitas atau password salah.", "error")
return render_template("login.html"), 401
session["logged_in"] = True
session["user_id"] = user.id
session["username"] = user.username
session["is_admin"] = bool(user.is_admin)
log.info(f"[LOGIN] OK user_id={user.id}; session set.")
return redirect(url_for("subjects"))
return render_template("login.html")
@app.route("/whoami")
def whoami():
return {
"logged_in": bool(session.get("logged_in")),
"user_id": session.get("user_id"),
"username": session.get("username"),
"is_admin": session.get("is_admin"),
}
@app.route("/auth/register", methods=["GET", "POST"])
def auth_register():
if request.method == "POST":
username = (request.form.get("username") or "").strip().lower()
email = (request.form.get("email") or "").strip().lower()
pw = (request.form.get("password") or "").strip()
confirm = (request.form.get("confirm") or "").strip()
if not username or not email or not pw:
flash("Semua field wajib diisi.", "error")
return render_template("register.html"), 400
if len(pw) < 6:
flash("Password minimal 6 karakter.", "error")
return render_template("register.html"), 400
if pw != confirm:
flash("Konfirmasi password tidak cocok.", "error")
return render_template("register.html"), 400
s = db()
try:
existed = (
s.query(User)
.filter(or_(func.lower(User.username) == username, func.lower(User.email) == email))
.first()
)
if existed:
flash("Username/Email sudah terpakai.", "error")
return render_template("register.html"), 409
u = User(username=username, email=email, password=generate_password_hash(pw), is_active=True)
s.add(u); s.commit()
finally:
s.close()
flash("Registrasi berhasil. Silakan login.", "success")
return redirect(url_for("auth_login"))
return render_template("register.html")
@app.route("/auth/logout")
def auth_logout():
session.clear()
return redirect(url_for("auth_login"))
@app.route("/about")
def about():
return render_template("about.html")
@app.route("/subjects")
@login_required
def subjects():
log.info(f"[SESSION DEBUG] logged_in={session.get('logged_in')} user_id={session.get('user_id')}")
return render_template("home.html", subjects=SUBJECTS)
@app.route("/chat/<subject_key>")
@login_required
def chat_subject(subject_key: str):
if subject_key not in SUBJECTS:
return redirect(url_for("subjects"))
session["subject_selected"] = subject_key
label = SUBJECTS[subject_key]["label"]
s = db()
try:
uid = session.get("user_id")
rows = (
s.query(ChatHistory)
.filter_by(user_id=uid, subject_key=subject_key)
.order_by(ChatHistory.id.asc())
.all()
)
history = [{"role": r.role, "message": r.message} for r in rows]
finally:
s.close()
return render_template("chat.html", subject=subject_key, subject_label=label, history=history)
@app.route("/health")
def health():
return jsonify({
"ok": True,
"encoder_loaded": ENCODER_MODEL is not None,
"llm_loaded": LLM is not None,
"model_path": MODEL_PATH,
"ctx_window": CTX_WINDOW,
"threads": N_THREADS,
})
@app.route("/ask/<subject_key>", methods=["POST"])
@login_required
def ask(subject_key: str):
if subject_key not in SUBJECTS:
return jsonify({"ok": False, "error": "invalid subject"}), 400
warmup_models()
t0 = time.perf_counter()
data = request.get_json(silent=True) or {}
query = (data.get("message") or "").strip()
if not query:
return jsonify({"ok": False, "error": "empty query"}), 400
if not validate_input_cached(query):
return jsonify({"ok": True, "answer": GUARDRAIL_BLOCK_TEXT})
try:
_ = load_subject_assets(subject_key)
except Exception as e:
log.exception(f"[ASSETS] error: {e}")
return jsonify({"ok": False, "error": f"subject assets error: {e}"}), 500
best = best_cosine_from_faiss(query, subject_key)
log.info(f"[RAG] Subject={subject_key.upper()} | Best cosine={best:.3f}")
if best < MIN_COSINE:
log.info(f"[RAG] Fallback by cosine: {best:.3f} < {MIN_COSINE}")
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
chunks = retrieve_top_chunks(query, subject_key)
if not chunks:
log.info("[RAG] Fallback by chunks=0")
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
sentences = pick_best_sentences_fast(query, chunks, top_k=5)
log.info(f"[RAG] sentences_selected={len(sentences)} (min_lex={MIN_LEXICAL}, top_k={5})")
if not sentences:
log.info("[RAG] Fallback by sentences=0")
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
prompt = build_prompt(query, sentences)
try:
# PASS-1: deterministik & singkat
raw_answer = generate(
LLM,
prompt,
max_tokens=int(os.environ.get("MAX_TOKENS", 64)),
temperature=float(os.environ.get("TEMP", 0.2)),
top_p=1.0,
stop=["</final>"]
) or ""
raw_answer = raw_answer.strip()
log.info(f"[LLM] Raw answer repr (pass1): {repr(raw_answer)}")
# Bersihkan tag <think> dan ambil isi <final>
text = re.sub(r"<think\b[^>]*>.*?</think>", "", raw_answer, flags=re.DOTALL | re.IGNORECASE).strip()
text = re.sub(r"</?think\b[^>]*>", "", text, flags=re.IGNORECASE).strip()
m_final = re.search(r"<final>\s*(.+)$", text, flags=re.IGNORECASE | re.DOTALL)
cleaned = (m_final.group(1).strip() if m_final else re.sub(r"<[^>]+>", "", text).strip())
def _alpha_tokens(s: str) -> List[str]:
return re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", s or "")
def _is_bad(s: str) -> bool:
s2 = (s or "").strip()
if not s2:
return True
if s2 in {"...", ".", "..", "…"}:
return True
toks = _alpha_tokens(s2)
if len(toks) >= 4:
return False
if any(t.lower() in {"newton","n","kg","m","s"} for t in toks) and len(toks) >= 3:
return False
return True
if _is_bad(cleaned):
prompt_retry = (
prompt
+ "\n\nULANGI DENGAN TAAT FORMAT: "
"Tulis satu kalimat faktual tanpa placeholder/ellipsis, "
"mulai huruf kapital dan akhiri titik. "
"Tulis hanya di dalam <final>...</final>."
)
raw_answer2 = generate(
LLM,
prompt_retry,
max_tokens=int(os.environ.get("MAX_TOKENS", 64)),
temperature=0.2,
top_p=1.0,
stop=["</final>"]
) or ""
raw_answer2 = raw_answer2.strip()
log.info(f"[LLM] Raw answer repr (pass2): {repr(raw_answer2)}")
text2 = re.sub(r"<think\b[^>]*>.*?</think>", "", raw_answer2, flags=re.DOTALL | re.IGNORECASE).strip()
text2 = re.sub(r"</?think\b[^>]*>", "", text2, flags=re.IGNORECASE).strip()
m_final2 = re.search(r"<final>\s*(.+)$", text2, flags=re.IGNORECASE | re.DOTALL)
cleaned2 = (m_final2.group(1).strip() if m_final2 else re.sub(r"<[^>]+>", "", text2).strip())
cleaned = cleaned2 or cleaned
answer = cleaned
except Exception as e:
log.exception(f"[LLM] generate error: {e}")
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
# Ambil 1 kalimat pertama saja
m = re.search(r"(.+?[.!?])(\s|$)", answer)
answer = (m.group(1) if m else answer).strip()
answer = strip_meta_sentence(answer)
# Simpan history
try:
s = db()
uid = session.get("user_id")
s.add_all([
ChatHistory(user_id=uid, subject_key=subject_key, role="user", message=query),
ChatHistory(user_id=uid, subject_key=subject_key, role="bot", message=answer),
])
s.commit()
except Exception as e:
log.exception(f"[DB] gagal simpan chat history: {e}")
finally:
try:
s.close()
except Exception:
pass
if not answer or len(answer) < 2:
answer = FALLBACK_TEXT
if ENABLE_PROFILING:
log.info({
"latency_total": time.perf_counter() - t0,
"subject": subject_key,
"faiss_best": best,
})
return jsonify({"ok": True, "answer": answer})
# ===== Admin =====
@app.route("/admin")
@admin_required
def admin_dashboard():
s = db()
try:
total_users = s.query(func.count(User.id)).scalar() or 0
total_active = s.query(func.count(User.id)).filter(User.is_active.is_(True)).scalar() or 0
total_admins = s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0
total_msgs = s.query(func.count(ChatHistory.id)).scalar() or 0
finally:
s.close()
return render_template("admin_dashboard.html", total_users=total_users, total_active=total_active, total_admins=total_admins, total_msgs=total_msgs)
@app.route("/admin/users")
@admin_required
def admin_users():
q = (request.args.get("q") or "").strip().lower()
page = max(int(request.args.get("page", 1)), 1)
per_page = min(max(int(request.args.get("per_page", 20)), 5), 100)
s = db()
try:
base = s.query(User)
if q:
base = base.filter(or_(func.lower(User.username).like(f"%{q}%"), func.lower(User.email).like(f"%{q}%")))
total = base.count()
users = base.order_by(User.id.asc()).offset((page - 1) * per_page).limit(per_page).all()
user_ids = [u.id for u in users] or [-1]
counts = dict(s.query(ChatHistory.user_id, func.count(ChatHistory.id)).filter(ChatHistory.user_id.in_(user_ids)).group_by(ChatHistory.user_id).all())
finally:
s.close()
return render_template("admin_users.html", users=users, counts=counts, q=q, page=page, per_page=per_page, total=total)
@app.route("/admin/history")
@admin_required
def admin_history():
q = (request.args.get("q") or "").strip().lower()
username = (request.args.get("username") or "").strip().lower()
subject = (request.args.get("subject") or "").strip().lower()
role = (request.args.get("role") or "").strip().lower()
page = max(int(request.args.get("page", 1)), 1)
per_page = min(max(int(request.args.get("per_page", 30)), 5), 200)
s = db()
try:
base = (s.query(ChatHistory, User).join(User, User.id == ChatHistory.user_id))
if q:
base = base.filter(func.lower(ChatHistory.message).like(f"%{q}%"))
if username:
base = base.filter(or_(func.lower(User.username) == username, func.lower(User.email) == username))
if subject:
base = base.filter(func.lower(ChatHistory.subject_key) == subject)
if role in ("user", "bot"):
base = base.filter(ChatHistory.role == role)
total = base.count()
rows = base.order_by(ChatHistory.id.desc()).offset((page - 1) * per_page).limit(per_page).all()
finally:
s.close()
items = [{
"id": r.ChatHistory.id,
"username": r.User.username,
"email": r.User.email,
"subject": r.ChatHistory.subject_key,
"role": r.ChatHistory.role,
"message": r.ChatHistory.message,
"timestamp": r.ChatHistory.timestamp,
} for r in rows]
return render_template("admin_history.html", items=items, subjects=SUBJECTS, q=q, username=username, subject=subject, role=role, page=page, per_page=per_page, total=total)
def _is_last_admin(s: Session) -> bool:
return (s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0) <= 1
@app.route("/admin/users/<int:user_id>/delete", methods=["POST"])
@admin_required
def admin_delete_user(user_id: int):
s = db()
try:
me_id = session.get("user_id")
user = s.query(User).filter_by(id=user_id).first()
if not user:
flash("User tidak ditemukan.", "error")
return redirect(request.referrer or url_for("admin_users"))
if user.id == me_id:
flash("Tidak bisa menghapus akun yang sedang login.", "error")
return redirect(request.referrer or url_for("admin_users"))
if user.is_admin and _is_last_admin(s):
flash("Tidak bisa menghapus admin terakhir.", "error")
return redirect(request.referrer or url_for("admin_users"))
s.query(ChatHistory).filter(ChatHistory.user_id == user.id).delete(synchronize_session=False)
s.delete(user); s.commit()
flash(f"User #{user_id} beserta seluruh riwayatnya telah dihapus.", "success")
except Exception as e:
s.rollback(); log.exception(f"[ADMIN] delete user error: {e}")
flash("Gagal menghapus user.", "error")
finally:
s.close()
return redirect(request.referrer or url_for("admin_users"))
@app.route("/admin/users/<int:user_id>/history/clear", methods=["POST"])
@admin_required
def admin_clear_user_history(user_id: int):
s = db()
try:
exists = s.query(User.id).filter_by(id=user_id).first()
if not exists:
flash("User tidak ditemukan.", "error")
return redirect(request.referrer or url_for("admin_history"))
deleted = s.query(ChatHistory).filter(ChatHistory.user_id == user_id).delete(synchronize_session=False)
s.commit()
flash(f"Riwayat chat user #{user_id} dihapus ({deleted} baris).", "success")
except Exception as e:
s.rollback(); log.exception(f"[ADMIN] clear history error: {e}")
flash("Gagal menghapus riwayat.", "error")
finally:
s.close()
return redirect(request.referrer or url_for("admin_history"))
@app.route("/admin/history/<int:chat_id>/delete", methods=["POST"])
@admin_required
def admin_delete_chat(chat_id: int):
s = db()
try:
row = s.query(ChatHistory).filter_by(id=chat_id).first()
if not row:
flash("Baris riwayat tidak ditemukan.", "error")
return redirect(request.referrer or url_for("admin_history"))
s.delete(row); s.commit()
flash(f"Riwayat chat #{chat_id} dihapus.", "success")
except Exception as e:
s.rollback(); log.exception(f"[ADMIN] delete chat error: {e}")
flash("Gagal menghapus riwayat.", "error")
finally:
s.close()
return redirect(request.referrer or url_for("admin_history"))
# ========= ENTRY =========
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=False)
|