NatureLM-Audio / app.py
Diane Kim
Initial round of UI updates
be68989
raw
history blame
21.4 kB
import re
import tempfile
from collections import Counter
from pathlib import Path
from typing import Literal, Optional
import gradio as gr
import torch
from NatureLM.config import Config
from NatureLM.models.NatureLM import NatureLM
from NatureLM.utils import generate_sample_batches, prepare_sample_waveforms
import spaces
class ModelManager:
"""Manages model loading and state"""
def __init__(self):
self.model: Optional[NatureLM] = None
self.config: Optional[Config] = None
self.is_loaded = False
self.is_loading = False
self.load_failed = False
def check_availability(self) -> tuple[bool, str]:
"""Check if the model is available for download"""
try:
from huggingface_hub import model_info
info = model_info("EarthSpeciesProject/NatureLM-audio")
return True, "Model is available"
except Exception as e:
return False, f"Model not available: {str(e)}"
def reset_state(self):
"""Reset the model loading state to allow retrying after a failure"""
self.model = None
self.is_loaded = False
self.is_loading = False
self.load_failed = False
return self.get_status()
def get_status(self) -> str:
"""Get the current model loading status"""
if self.is_loaded:
return "βœ… Model loaded and ready"
elif self.is_loading:
return "πŸ”„ Loading model... Please wait"
elif self.load_failed:
return "❌ Model failed to load. Please check the configuration."
else:
return "⏳ Ready to load model on first use"
def load_model(self) -> Optional[NatureLM]:
"""Load the model if needed"""
if self.is_loaded:
return self.model
if self.is_loading or self.load_failed:
return None
try:
self.is_loading = True
print("Loading model...")
# Check if model is available first
available, message = self.check_availability()
if not available:
raise Exception(f"Model not available: {message}")
model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
model.to("cuda")
model.eval()
self.model = model
self.is_loaded = True
self.is_loading = False
print("Model loaded successfully!")
return model
except Exception as e:
print(f"Error loading model: {e}")
self.is_loading = False
self.load_failed = True
return None
# Global model manager instance
model_manager = ModelManager()
@spaces.GPU
def prompt_lm(audios: list[str], messages: list[dict[str, str]]) -> str:
"""Generate response using the model"""
model = model_manager.load_model()
if model is None:
if model_manager.is_loading:
return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment."
elif model_manager.load_failed:
return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again using the retry button."
else:
return "Demo mode: Model not loaded. Please check the model configuration."
cuda_enabled = torch.cuda.is_available()
samples = prepare_sample_waveforms(audios, cuda_enabled)
prompt_text = model.llama_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
).removeprefix(model.llama_tokenizer.bos_token)
prompt_text = re.sub(
r"<\|start_header_id\|>system<\|end_header_id\|>\n\nCutting Knowledge Date: [^\n]+\nToday Date: [^\n]+\n\n<\|eot_id\|>",
"",
prompt_text,
)
prompt_text = re.sub("\\n", r"\\n", prompt_text)
print(f"{prompt_text=}")
with torch.cuda.amp.autocast(dtype=torch.float16):
llm_answer = model.generate(samples, model_manager.config.generate, prompts=[prompt_text])
return llm_answer[0]
def _multimodal_textbox_factory():
return gr.MultimodalTextbox(
value=None,
interactive=True,
sources="microphone",
placeholder="Enter message...",
show_label=False,
autofocus=True,
submit_btn="Send"
)
def user_message(content):
return {"role": "user", "content": content}
def add_message(history, message):
for x in message["files"]:
history.append(user_message({"path": x}))
if message["text"]:
history.append(user_message(message["text"]))
return history, _multimodal_textbox_factory()
def combine_model_inputs(msgs: list[dict[str, str]]) -> dict[str, list[str]]:
messages = []
files = []
for msg in msgs:
print(msg, messages, files)
match msg:
case {"content": (path,)}:
messages.append({"role": msg["role"], "content": "<Audio><AudioHere></Audio> "})
files.append(path)
case _:
messages.append(msg)
# Join consecutive messages from the same role
joined_messages = []
for msg in messages:
if joined_messages and joined_messages[-1]["role"] == msg["role"]:
joined_messages[-1]["content"] += msg["content"]
else:
joined_messages.append(msg)
return {"messages": joined_messages, "files": files}
def bot_response(history: list):
print(type(history))
combined_inputs = combine_model_inputs(history)
response = prompt_lm(combined_inputs["files"], combined_inputs["messages"])
history.append({"role": "assistant", "content": response})
return history
def _chat_tab(examples):
# Status indicator
status_text = gr.Textbox(
value=model_manager.get_status(),
label="Model Status",
interactive=False,
visible=True
)
chatbot = gr.Chatbot(
label="Chat",
elem_id="chatbot",
bubble_full_width=False,
type="messages",
render_markdown=False,
resizeable=True
)
chat_input = _multimodal_textbox_factory()
send_all = gr.Button("Send all", elem_id="send-all")
clear_button = gr.ClearButton(components=[chatbot, chat_input], visible=False)
chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = send_all.click(
bot_response,
[chatbot],
[chatbot],
api_name="bot_response",
)
# Update status after bot response
bot_msg.then(lambda: model_manager.get_status(), None, [status_text])
bot_msg.then(lambda: gr.ClearButton(visible=True), None, [clear_button])
clear_button.click(lambda: gr.ClearButton(visible=False), None, [clear_button])
gr.Examples(
list(examples.values()),
chatbot,
chatbot,
example_labels=list(examples.keys()),
examples_per_page=20,
)
def summarize_batch_results(results):
summary = Counter(results)
summary_str = "\n".join(f"{k}: {v}" for k, v in summary.most_common())
return summary_str
def run_batch_inference(files, task, progress=gr.Progress()) -> str:
model = model_manager.load_model()
if model is None:
if model_manager.is_loading:
return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment."
elif model_manager.load_failed:
return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again."
else:
return "Demo mode: Model not loaded. Please check the model configuration."
outputs = []
prompt = "<Audio><AudioHere></Audio> " + task
for file in progress.tqdm(files):
outputs.append(prompt_lm([file], [{"role": "user", "content": prompt}]))
batch_summary: str = summarize_batch_results(outputs)
report = f"Batch summary:\n{batch_summary}\n\n"
return report
def multi_extension_glob_mask(mask_base, *extensions):
mask_ext = ["[{}]".format("".join(set(c))) for c in zip(*extensions)]
if not mask_ext or len(set(len(e) for e in extensions)) > 1:
mask_ext.append("*")
return mask_base + "".join(mask_ext)
def _batch_tab(file_selection: Literal["upload", "explorer"] = "upload"):
if file_selection == "explorer":
files = gr.FileExplorer(
glob=multi_extension_glob_mask("**.", "mp3", "flac", "wav"),
label="Select audio files",
file_count="multiple",
)
elif file_selection == "upload":
files = gr.Files(label="Uploaded files", file_types=["audio"], height=300)
task = gr.Textbox(label="Task", placeholder="Enter task...", show_label=True)
process_btn = gr.Button("Process")
output = gr.TextArea()
process_btn.click(
run_batch_inference,
[files, task],
[output],
)
def to_raven_format(outputs: dict[int, str], chunk_len: int = 10) -> str:
def get_line(row, start, end, annotation):
return f"{row}\tSpectrogram 1\t1\t{start}\t{end}\t0\t8000\t{annotation}"
raven_output = ["Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tAnnotation"]
current_offset = 0
last_label = ""
row = 1
for offset, label in sorted(outputs.items()):
if label != last_label and last_label:
raven_output.append(get_line(row, current_offset, offset, last_label))
current_offset = offset
row += 1
if not last_label:
current_offset = offset
if label != "None":
last_label = label
else:
last_label = ""
if last_label:
raven_output.append(get_line(row, current_offset, current_offset + chunk_len, last_label))
return "\n".join(raven_output)
def _run_long_recording_inference(file, task, chunk_len: int = 10, hop_len: int = 5, progress=gr.Progress()):
# Check if model is loading
if model_manager.is_loading:
return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment.", None
# Check if model failed to load
if model_manager.load_failed:
return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease refresh the page to try again.", None
model = model_manager.load_model()
if model is None:
return "Demo mode: Model not loaded. Please check the model configuration.", None
cuda_enabled = torch.cuda.is_available()
outputs = {}
offset = 0
prompt = f"<Audio><AudioHere></Audio> {task}"
prompt = model_manager.config.model.prompt_template.format(prompt)
for batch in progress.tqdm(generate_sample_batches(file, cuda_enabled, chunk_len=chunk_len, hop_len=hop_len)):
prompt_strs = [prompt] * len(batch["audio_chunk_sizes"])
with torch.cuda.amp.autocast(dtype=torch.float16):
llm_answers = model.generate(batch, model_manager.config.generate, prompts=prompt_strs)
for answer in llm_answers:
outputs[offset] = answer
offset += hop_len
report = f"Number of chunks: {len(outputs)}\n\n"
for offset in sorted(outputs.keys()):
report += f"{offset:02d}s:\t{outputs[offset]}\n"
raven_output = to_raven_format(outputs, chunk_len=chunk_len)
with tempfile.NamedTemporaryFile(mode="w", prefix="raven-", suffix=".txt", delete=False) as f:
f.write(raven_output)
raven_file = f.name
return report, raven_file
def _long_recording_tab():
audio_input = gr.Audio(label="Upload audio file", type="filepath")
task = gr.Dropdown(
[
"What are the common names for the species in the audio, if any?",
"Caption the audio.",
"Caption the audio, using the scientific name for any animal species.",
"Caption the audio, using the common name for any animal species.",
"What is the scientific name for the focal species in the audio?",
"What is the common name for the focal species in the audio?",
"What is the family of the focal species in the audio?",
"What is the genus of the focal species in the audio?",
"What is the taxonomic name of the focal species in the audio?",
"What call types are heard from the focal species in the audio?",
"What is the life stage of the focal species in the audio?",
],
label="Tasks",
allow_custom_value=True,
)
with gr.Accordion("Advanced options", open=False):
hop_len = gr.Slider(1, 10, 5, label="Hop length (seconds)", step=1)
chunk_len = gr.Slider(1, 10, 10, label="Chunk length (seconds)", step=1)
process_btn = gr.Button("Process")
output = gr.TextArea()
download_raven = gr.DownloadButton("Download Raven file")
process_btn.click(
_run_long_recording_inference,
[audio_input, task, chunk_len, hop_len],
[output, download_raven],
)
def main(
assets_dir: Path,
cfg_path: str | Path,
options: list[str] = [],
device: str = "cuda",
):
# Load configuration
try:
cfg = Config.from_sources(yaml_file=cfg_path, cli_args=options)
model_manager.config = cfg
print("Configuration loaded successfully")
except Exception as e:
print(f"Warning: Could not load config: {e}")
print("Running in demo mode")
model_manager.config = None
# Check if assets directory exists, if not create a placeholder
if not assets_dir.exists():
print(f"Warning: Assets directory {assets_dir} does not exist")
assets_dir.mkdir(exist_ok=True)
# Create placeholder audio files if they don't exist
laz_audio = assets_dir / "Lazuli_Bunting_yell-YELLLAZB20160625SM303143.mp3"
frog_audio = assets_dir / "nri-GreenTreeFrogEvergladesNP.mp3"
robin_audio = assets_dir / "yell-YELLAMRO20160506SM3.mp3"
vireo_audio = assets_dir / "yell-YELLWarblingVireoMammoth20150614T29ms.mp3"
examples = {
"Caption the audio (Lazuli Bunting)": [
[
user_message({"path": str(laz_audio)}),
user_message("Caption the audio."),
]
],
"Caption the audio (Green Tree Frog)": [
[
user_message({"path": str(frog_audio)}),
user_message("Caption the audio, using the common name for any animal species."),
]
],
"Caption the audio (American Robin)": [
[
user_message({"path": str(robin_audio)}),
user_message("Caption the audio."),
]
],
"Caption the audio (Warbling Vireo)": [
[
user_message({"path": str(vireo_audio)}),
user_message("Caption the audio."),
]
],
}
with gr.Blocks(title="NatureLM-audio", theme=gr.themes.Base(primary_hue="blue", font=[gr.themes.GoogleFont("Noto Sans")])) as app:
header = gr.HTML("""
<div style="display: flex; align-items: center; gap: 12px;"><h2 style="margin: 0;">NatureLM-audio<span style="font-size: 0.55em; color: #28a745; background: #e6f4ea; padding: 2px 6px; border-radius: 4px; margin-left: 8px; display: inline-block; vertical-align: top;">BETA</span></h2></div>
""")
with gr.Tabs():
with gr.Tab("Analyze Audio"):
uploaded_audio = gr.State()
with gr.Column(visible=True) as onboarding_message:
gr.HTML("""
<div style="
background: transparent;
border: 1px solid #e5e7eb;
border-radius: 8px;
padding: 16px 20px;
display: flex;
align-items: center;
justify-content: space-between;
margin-bottom: 16px;
margin-left: 0;
margin-right: 0;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
">
<div style="display: flex; padding: 0px; align-items: center; flex: 1;">
<div style="font-size: 20px; margin-right: 12px;">πŸ‘‹</div>
<div style="flex: 1;">
<div style="font-size: 16px; font-weight: 600; color: #374151; margin-bottom: 4px;">Welcome to NatureLM-audio!</div>
<div style="font-size: 14px; color: #6b7280; line-height: 1.4;">Upload your first audio file below or try a sample from our library.</div>
</div>
</div>
<a href="https://www.earthspecies.org/blog" target="_blank" style="
padding: 6px 12px;
border-radius: 6px;
font-size: 13px;
font-weight: 500;
cursor: pointer;
border: none;
background: #3b82f6;
color: white;
text-decoration: none;
display: inline-block;
transition: background 0.2s ease;
"
onmouseover="this.style.background='#2563eb';"
onmouseout="this.style.background='#3b82f6';"
>View Tutorial</a>
</div>
""", padding=False)
with gr.Column(visible=True) as upload_section:
audio_input = gr.Audio(
type="filepath",
container=True,
interactive=True,
sources=['upload']
)
with gr.Group(visible=False) as chat:
chatbot = gr.Chatbot(
elem_id="chatbot",
type="messages",
render_markdown=False,
feedback_options=["like", "dislike", "wrong species", "incorrect response", "other"],
resizeable=True
)
chat_input = _multimodal_textbox_factory()
send_all = gr.Button("Send all")
def start_chat_interface(audio_path):
return (
gr.update(visible=False), # hide onboarding message
gr.update(visible=True), # show upload section
gr.update(visible=True), # show chat box
)
audio_input.change(
fn=start_chat_interface,
inputs=[audio_input],
outputs=[onboarding_message, upload_section, chat]
)
chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
send_all.click(bot_response, [chatbot], [chatbot])
with gr.Tab("Sample Library"):
gr.Markdown("## Sample Library\n\nExplore example audio files below.")
gr.Examples(
list(examples.values()),
chatbot,
chatbot,
example_labels=list(examples.keys()),
examples_per_page=20,
)
with gr.Tab("πŸ’‘ Help"):
gr.Markdown("## User Guide") # to fill out
gr.Markdown("## Share Feedback") # to fill out
gr.Markdown("## FAQs") # to fill out
app.css = """
.welcome-banner {
background: transparent !important;
border: 1px solid #e5e7eb !important;
border-radius: 8px !important;
padding: 16px 20px !important;
margin-bottom: 16px !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
}
.welcome-banner > div {
background: transparent !important;
}
.welcome-banner button {
margin: 0 4px !important;
}
"""
# Disabling Batch and Long Recording tabs for now
""" with gr.Tab("Batch"):
_batch_tab()
with gr.Tab("Long Recording"):
_long_recording_tab() """
return app
# Create and launch the app
app = main(
assets_dir=Path("assets"),
cfg_path=Path("configs/inference.yml"),
options=[],
device="cuda",
)
if __name__ == "__main__":
app.launch()