Spaces:
Sleeping
Sleeping
metadata
title: Argument Mining Backend
emoji: 🧠
colorFrom: blue
colorTo: green
sdk: docker
sdk_version: '3.10'
app_file: app.py
pinned: false
🧠 Argument Mining Backend (FastAPI)
Argument Mining Backend is a REST API designed to predict argumentative relations (Support / Attack) between sentences and analyze text using the ABA (Assumption-Based Argumentation) framework. It is intended to be used alongside a frontend application (e.g., Next.js or React).
🚀 Features
- Endpoint
/predict-text: Predict the relation between two manually provided arguments. - Endpoint
/predict-csv: Predict relations from a CSV file containing argument pairs. - Endpoint
/aba-upload: Upload a text file to generate and analyze an ABA+ framework. - Endpoint
/aba-example: Run ABA analysis on predefined example text. - Endpoint
/aba-exemple/{filename}: Analyze ABA with a predefined text file. - Text preprocessing before feeding data into the model.
- Chargement d’un modèle sauvegardé (
model.pkl,.pt, etc.). - Load saved machine learning models (.pt, .pkl, etc.) for inference.
- Automatic Swagger documentation for easy API exploration.
- CORS middleware for cross-origin requests.
📦 Installation
Clone the repository
git clone https://github.com/<ton-user>/argument-backend.git
cd argument-backend
Setup environment
Option 1: Using Conda (recommended)
conda env create -f environment.yml
conda activate argument-backend
Option 2: Using Python venv
python -m venv venv
source venv/bin/activate # Linux / Mac
venv\Scripts\activate # Windows
pip install -r requirements.txt
▶️ Running Locally
uvicorn app:app --reload --host 0.0.0.0 --port 8000
- API will be available at: http://127.0.0.1:8000
- Swagger UI documentation: http://127.0.0.1:8000/docs
📂 Project Structure
argument-backend/
│── app.py # FastAPI application entrypoint
│── aba # ABA framework modules
│── relations # Argument relation prediction modules
│── models # Saved ML models (.pth, .pkl, etc.)
⚡Notes
- Designed for seamless integration with a frontend application for visualizing argument graphs.
- Supports batch prediction with CSV files (limited to 100 rows per request).
- ABA+ framework generation supports assumptions, arguments, attacks, and reverse attacks.
🌐 Live Demo
Check the live frontend here: Arguments Visualization