File size: 6,794 Bytes
250a0ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
from torch import nn


class BasicBlock(nn.Module):
    """Basic building block for ResNet-18/34"""
    expansion = 1

    def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    """Bottleneck building block for ResNet-50/101/152"""
    expansion = 4

    def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    """ResNet model for image classification

    Supports ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152
    Adapted for small images like MedMNIST (28x28)
    """

    def __init__(
        self,
        block: type[BasicBlock | Bottleneck],
        layers: list[int],
        num_classes: int = 11,
        in_channels: int = 1,
    ):
        super().__init__()
        self.in_channels = 64

        # Initial convolution layer (adapted for small 28x28 images)
        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        # Removed maxpool for small images

        # ResNet layers
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        # Global average pooling and classifier
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        # Initialize weights
        self._initialize_weights()

    def _make_layer(self, block: type[BasicBlock | Bottleneck], out_channels: int, blocks: int, stride: int = 1) -> nn.Sequential:
        downsample = None
        if stride != 1 or self.in_channels != out_channels * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * block.expansion),
            )

        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, out_channels))

        return nn.Sequential(*layers)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x


def resnet18(num_classes: int = 11, in_channels: int = 1) -> ResNet:
    """ResNet-18 model

    Args:
        num_classes: Number of output classes (default: 11 for organamnist)
        in_channels: Number of input channels (default: 1 for grayscale)

    Returns:
        ResNet-18 model
    """
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_channels=in_channels)


def resnet50(num_classes: int = 11, in_channels: int = 1) -> ResNet:
    """ResNet-50 model

    Args:
        num_classes: Number of output classes (default: 11 for organamnist)
        in_channels: Number of input channels (default: 1 for grayscale)

    Returns:
        ResNet-50 model
    """
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_channels=in_channels)


# Keep the old Model class for backward compatibility
class Model(nn.Module):
    """Just a dummy model to show how to structure your code"""
    def __init__(self):
        super().__init__()
        self.layer = nn.Linear(1, 1)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.layer(x)


if __name__ == "__main__":
    # Test ResNet-18
    model18 = resnet18(num_classes=11, in_channels=1)
    x = torch.rand(4, 1, 28, 28)  # Batch of 4 grayscale 28x28 images
    output = model18(x)
    print(f"ResNet-18 output shape: {output.shape}")  # Should be [4, 11]

    # Test ResNet-50
    model50 = resnet50(num_classes=11, in_channels=1)
    output50 = model50(x)
    print(f"ResNet-50 output shape: {output50.shape}")  # Should be [4, 11]

    # Count parameters
    params18 = sum(p.numel() for p in model18.parameters())
    params50 = sum(p.numel() for p in model50.parameters())
    print(f"ResNet-18 parameters: {params18:,}")
    print(f"ResNet-50 parameters: {params50:,}")