GeoQuery / backend /services /response_formatter.py
GerardCB's picture
Deploy to Spaces (Final Clean)
4851501
"""
Response Formatter Service
Handles formatting of query results into citations, charts, GeoJSON layers, and raw data for the frontend.
Separates presentation logic from execution logic.
"""
from typing import List, Dict, Any, Optional
import uuid
class ResponseFormatter:
@staticmethod
def generate_citations(tables: List[str], features: Optional[List[Dict]] = None) -> List[str]:
"""Generates readable citations based on table names and returned features."""
citations = []
processed = set()
# Check explicit table list
for table in tables:
table = table.lower()
if table in processed: continue
if "universit" in table:
citations.append("Universities Data (OpenStreetMap, 2024)")
elif "school" in table or "education" in table:
citations.append("Education Facilities (OpenStreetMap, 2024)")
elif "hospital" in table or "health" in table:
citations.append("Health Facilities (OpenStreetMap, 2024)")
elif "airport" in table:
citations.append("Airports Data (OpenStreetMap, 2024)")
elif "road" in table:
citations.append("Road Network (OpenStreetMap, 2024)")
elif "population" in table or "census" in table:
citations.append("Panama Census Data (INEC, 2023)")
elif "admin" in table or "boundar" in table:
if "Admin Boundaries" not in processed:
citations.append("Panama Administrative Boundaries (HDX COD-AB, 2021)")
processed.add("Admin Boundaries")
continue
processed.add(table)
# Fallback check on features if no specific tables cited but admin data returned
if not citations and features:
if any(k.startswith("adm") for k in features[0].get("properties", {}).keys()):
citations.append("Panama Administrative Boundaries (HDX COD-AB, 2021)")
return list(set(citations))
@staticmethod
def generate_chart_data(sql: str, features: List[Dict]) -> Optional[Dict[str, Any]]:
"""
Generates Chart.js compatible data structure if the query looks aggregative.
"""
if not features:
return None
# Heuristic: If GROUP BY or ORDER BY ... LIMIT is used, likely suitable for charting
# Or if explicitly requested via intent (logic handled in caller, but we check SQL signature here too)
# Try to find string (label) and number (value) in properties
try:
chart_items = []
x_key = "name"
y_key = "value"
x_label = "Feature"
y_label = "Value"
# 1. Analyze properties to find X (Label) and Y (Value)
if features:
sample_props = features[0].get("properties", {})
# Exclude system keys
valid_keys = [k for k in sample_props.keys() if k not in ["geom", "geometry", "style", "layer_name", "layer_id", "choropleth", "fillColor", "color"]]
# Find Y (Value) - First numeric column
for k in valid_keys:
if isinstance(sample_props[k], (int, float)) and not k.endswith("_id") and not k.endswith("_code"):
y_key = k
y_label = k.replace("_", " ").title()
if "sqkm" in k: y_label = "Area (km²)"
elif "pop" in k: y_label = "Population"
elif "count" in k: y_label = "Count"
break
# Find X (Label) - First string column (excluding IDs if possible)
for k in valid_keys:
if isinstance(sample_props[k], str) and "name" in k:
x_key = k
x_label = k.replace("_", " ").title().replace("Name", "").strip() or "Region"
break
# 2. Build Data
for f in features:
props = f.get("properties", {})
label = props.get(x_key)
value = props.get(y_key)
if label is not None and value is not None:
chart_items.append({"name": str(label), "value": value})
if chart_items:
# auto-sort descending
chart_items.sort(key=lambda x: x["value"], reverse=True)
return {
"type": "bar",
"title": f"{y_label} by {x_label}",
"data": chart_items[:15], # Limit to top 15 for readability
"xKey": "name",
"yKey": "value",
"xAxisLabel": x_label,
"yAxisLabel": y_label
}
except Exception as e:
print(f"Error generating chart data: {e}")
return None
return None
@staticmethod
def prepare_raw_data(features: List[Dict]) -> List[Dict]:
"""Cleans feature properties for display in the raw data table."""
raw_data = []
if not features:
return raw_data
for f in features:
props = f.get("properties", {}).copy()
# Serialize
props = ResponseFormatter._serialize_properties(props)
# Remove system/visual properties
for key in ["geom", "geometry", "style", "layer_name", "layer_id", "choropleth", "fillColor", "color"]:
props.pop(key, None)
raw_data.append(props)
return raw_data
@staticmethod
def format_geojson_layer(query: str, geojson: Dict[str, Any], features: List[Dict], layer_name: str, layer_emoji: str = "📍", point_style: Optional[str] = None, admin_levels: Optional[List[str]] = None) -> tuple[Dict[str, Any], str, str]:
"""
styles the GeoJSON layer and generates metadata (ID, Name, Choropleth).
Args:
point_style: "icon" for emoji markers, "circle" for simple colored circles, None for auto-detect
"""
# 0. Serialize properties to avoid datetime errors
if features:
for f in features:
if "properties" in f:
f["properties"] = ResponseFormatter._serialize_properties(f["properties"])
# 2. Random/Distinct Colors
# Palette of distinct colors (avoiding pure blue which is default)
palette = [
"#E63946", # Red
"#F4A261", # Orange
"#2A9D8F", # Teal
"#E9C46A", # Yellow
"#9C6644", # Brown
"#D62828", # Dark Red
"#8338EC", # Purple
"#3A86FF", # Blue-ish (but distinct)
"#FB5607", # Orange-Red
"#FF006E", # Pink
]
# Deterministic color based on query hash to keep it stable for same query
color_idx = abs(hash(query)) % len(palette)
layer_color = palette[color_idx]
# Choropleth Logic
# 1. Identify valid numeric column
choropleth_col = None
if features:
sample = features[0].get("properties", {})
valid_numerics = [
k for k, v in sample.items()
if isinstance(v, (int, float))
and k not in ["layer_id", "style"]
and not k.endswith("_code")
and not k.endswith("_id")
]
# Prioritize 'population', 'area', 'count'
priority_cols = ["population", "pop", "count", "num", "density", "area_sqkm", "area"]
for p in priority_cols:
matches = [c for c in valid_numerics if p in c]
if matches:
choropleth_col = matches[0]
break
# Fallback to first numeric
if not choropleth_col and valid_numerics:
choropleth_col = valid_numerics[0]
# 2. Enable if appropriate
if choropleth_col:
# Check if values actually vary
values = [f["properties"].get(choropleth_col, 0) for f in features]
if len(set(values)) > 1:
geojson["properties"]["choropleth"] = {
"enabled": True,
"palette": "viridis",
"column": choropleth_col,
"scale": "log" if "pop" in choropleth_col or "density" in choropleth_col else "linear"
}
else:
# Apply random color if NOT a choropleth
geojson["properties"]["style"] = {
"color": layer_color,
"fillColor": layer_color,
"opacity": 0.8,
"fillOpacity": 0.4
}
layer_id = str(uuid.uuid4())[:8]
geojson["properties"]["layer_name"] = layer_name
geojson["properties"]["layer_id"] = layer_id
# Add Point Marker Configuration
# Use pointStyle to determine whether to show icon or circle
marker_icon = None
marker_style = "circle" # default
if point_style == "icon":
# Use emoji icon for categorical POI
marker_icon = layer_emoji
marker_style = "icon"
elif point_style == "circle":
# Use simple circle for large datasets or density viz
marker_icon = None
marker_style = "circle"
else:
# Auto-detect: default to icon for now (backward compatibility)
marker_icon = layer_emoji
marker_style = "icon"
geojson["properties"]["pointMarker"] = {
"icon": marker_icon,
"style": marker_style,
"color": layer_color,
"size": 32
}
return geojson, layer_id, layer_name
@staticmethod
def generate_data_summary(features: List[Dict]) -> str:
"""Generates a text summary of the features for the LLM explanation context."""
if features:
sample_names = []
for f in features[:5]:
props = f.get("properties", {})
name = props.get("adm3_name") or props.get("adm2_name") or props.get("adm1_name") or props.get("name") or "Feature"
area = props.get("area_sqkm")
if area:
sample_names.append(f"{name} ({float(area):.1f} km²)")
else:
sample_names.append(name)
return f"Found {len(features)} features. Sample: {', '.join(sample_names)}"
return f"Found {len(features)} features. Sample: {', '.join(sample_names)}"
else:
return "No features found matching the query."
@staticmethod
def _serialize_properties(properties: Dict[str, Any]) -> Dict[str, Any]:
"""Recursively converts datetime/date objects to strings for JSON serialization."""
from datetime import datetime, date
serialized = {}
for k, v in properties.items():
if isinstance(v, (datetime, date)):
serialized[k] = v.isoformat()
elif isinstance(v, dict):
serialized[k] = ResponseFormatter._serialize_properties(v)
elif isinstance(v, list):
serialized[k] = [
x.isoformat() if isinstance(x, (datetime, date)) else x
for x in v
]
else:
serialized[k] = v
return serialized