Priyanshujha18's picture
feat: Hackathon compliance updates - LlamaIndex, Multi-track, Gradio 6
a8063f2
---
title: Deploy Ready Copilot
emoji: ๐Ÿš€
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
tags:
- mcp-in-action-track-enterprise
- building-mcp-track-enterprise
- gradio
- claude
- multi-agent
- deployment
- productivity
- context7
- github
- vercel
- mcp-server
---
# ๐Ÿš€ Deployment Readiness Copilot
**Multi-agent AI system for deployment readiness validation and documentation generation**
## ๐ŸŽฏ Overview
The Deployment Readiness Copilot is a productivity-focused, developer-centric tool that automates deployment readiness checks using a multi-agent architecture. It combines Claude's reasoning with sponsor LLM cross-checks and MCP tool integration to provide comprehensive pre-deployment validation across multiple platforms.
## โœจ Features
- **๐Ÿค– Multi-Agent Pipeline**: Planner โ†’ Evidence Gatherer โ†’ Synthesis โ†’ Documentation โ†’ Reviewer โ†’ Docs Lookup โ†’ Deployment
- **๐Ÿ“ Codebase Analysis**: Upload folder (ZIP) or GitHub repo โ†’ Auto-detect framework, dependencies, configs
- **๐Ÿ“š Context7 Documentation Integration**: Automatic framework/platform documentation lookups
- **๐Ÿ”ง MCP Tool Integration**: Real-time deployment signals from Hugging Face Spaces, Vercel, Context7, and GitHub
- **๐Ÿš€ Multi-Platform Deployment**: Deploy to Vercel, Netlify, AWS, GCP, Azure, Railway, Render, Fly.io, Kubernetes, Docker
- **๐ŸŽ“ Sponsor LLM Cross-Checks**: Gemini 2.0 Flash + OpenAI GPT-4o mini for synthesis and validation
- **๐Ÿ“ Auto-Documentation**: Generates changelog entries, README snippets, and announcement drafts
- **โœ… Risk Assessment**: Automated review with confidence scoring and actionable findings
### ๐Ÿ”ฅ 10 Major Utility Improvements
1. **๐Ÿ“Š Real-Time Deployment Monitoring**: Track deployment status, stages, and logs in real-time
2. **๐Ÿ”’ Security Scanning**: Scan dependencies for vulnerabilities and detect exposed secrets
3. **๐Ÿ’ฐ Cost Estimation**: Compare costs across platforms with optimization recommendations
4. **๐Ÿ” Environment Variable Validation**: Validate env vars, detect missing required vars, security issues
5. **โšก Performance Optimization**: Framework-specific performance analysis and improvement suggestions
6. **๐Ÿ”„ CI/CD Pipeline Generation**: Auto-generate GitHub Actions and GitLab CI configurations
7. **โฎ๏ธ Rollback Strategies**: Generate rollback plans and disaster recovery procedures
8. **๐ŸŒ Multi-Environment Support**: Deploy to dev/staging/production with environment-specific configs
9. **๐Ÿ‘ฅ Team Collaboration**: Review sessions, stakeholder approvals, comments, and feedback
10. **๐Ÿ“Š Monitoring Integration**: Setup recommendations for Sentry, New Relic, Datadog, and platform-native tools
## ๐Ÿ—๏ธ Architecture
### Agents
1. **Planner Agent (Claude)**: Analyzes project context and generates deployment readiness checklist
2. **Evidence Agent (Claude + MCP)**: Gathers real deployment signals via MCP tools
3. **Synthesis Agent (Gemini/OpenAI)**: Cross-validates Claude's evidence to earn sponsor bonus points
4. **Documentation Agent (Claude)**: Generates deployment communications
5. **Reviewer Agent (Claude)**: Final risk assessment with confidence scoring
6. **Documentation Lookup Agent (Context7)**: Looks up framework/platform docs for:
- Deployment guides
- Dependency compatibility
- Config validation
- Runbook generation
- Environment variables
- Migration guides
- Observability setup
7. **Deployment Agent (GitHub)**: Prepares and executes deployment actions
### MCP Tools Used
- **Context7**: Framework/platform documentation lookups
- **Hugging Face Spaces**: Status checks and validation
- **Vercel**: Deployment validation
- **GitHub**: Deployment PR creation and workflow triggers
- (Extensible to other MCP-compatible services)
## ๐Ÿš€ Quick Start
1. **Set Environment Variables** (in HF Space Secrets):
- `ANTHROPIC_API_KEY`: Your Claude API key (required)
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Enables Gemini sponsor synthesis
- `OPENAI_API_KEY`: Enables OpenAI sponsor synthesis
- `SPONSOR_LLM_PRIORITY`: Optional override (default `gemini,openai`)
- `GEMINI_MODEL`, `OPENAI_MODEL`: Optional model overrides
- `HF_TOKEN`: For Hugging Face MCP tools (optional)
- `GITHUB_TOKEN`: For GitHub deployment actions (optional)
- `GITHUB_REPO`: Repository in format `owner/repo` (optional, for deployments)
- `GITHUB_BRANCH`: Branch name (default: `main`) (optional)
2. **Upload & Analyze**:
- Upload your project folder as ZIP, OR
- Enter GitHub repo URL
- Click "Analyze Codebase" to auto-detect framework and dependencies
3. **Configure & Deploy**:
- Review auto-filled project details
- Select deployment platform (Vercel, AWS, etc.)
- Choose environment (dev/staging/production)
- Click "Run Full Pipeline & Deploy"
- Review all utility reports (security, cost, performance, etc.)
- Deploy directly via MCP
## ๐Ÿ“‹ Example Usage
```
Project: Telemetry API
Release Goal: Enable adaptive sampling
Code Summary: Adds config surface, toggles feature flag, bumps schema version.
Stakeholders: eng, sre
```
The system will:
1. Generate a deployment readiness plan
2. Gather evidence via MCP tools
3. Lookup framework/platform documentation via Context7
4. Cross-validate evidence with sponsor LLMs
5. Create documentation artifacts
6. Prepare GitHub deployment actions (if configured)
7. Provide final review with risk assessment
## ๐ŸŽฏ Hackathon Submission
**Primary Tracks**:
- `mcp-in-action-track-enterprise` (MCP in Action - Enterprise)
- `building-mcp-track-enterprise` (Building MCP - Enterprise)
**Multi-Track Compatibility**:
- โœ… **Track 1 (Building MCP)**: Functions as an MCP server with custom tools.
- โœ… **Track 2 (MCP in Action)**: Autonomous multi-agent behavior with planning, reasoning, and execution via MCP tools.
- โœ… **LlamaIndex Prize**: Integrated `RAGAgent` using LlamaIndex for codebase analysis.
- โœ… **OpenAI/Gemini Prizes**: Uses OpenAI and Gemini for sponsor cross-checks.
**Key Highlights**:
- โœ… Autonomous multi-agent behavior with planning, reasoning, and execution
- โœ… MCP servers used as tools (Context7, HF Spaces, Vercel, GitHub)
- โœ… Context7 integration for comprehensive documentation lookups
- โœ… GitHub deployment actions for direct deployment execution
- โœ… Gradio app with MCP server support (`mcp_server=True`)
- โœ… Sponsor LLM integration (Gemini, OpenAI) with configurable priority
- โœ… Real-world productivity use case for developers
- โœ… 10 utility improvements covering security, cost, performance, CI/CD, monitoring, and collaboration
## ๐Ÿ”ง Technical Stack
- **Gradio 5.49.1**: UI framework with MCP server support
- **Anthropic Claude 3.5 Sonnet**: Primary reasoning engine
- **Google Gemini 2.0 Flash**: Sponsor cross-validation
- **OpenAI GPT-4o mini**: Alternate sponsor cross-validation
- **Hugging Face Hub**: MCP client for tool integration
- **Context7 MCP**: Documentation lookup service
- **GitHub & Vercel MCP**: Deployment validation and workflow triggers
- **LlamaIndex**: RAG engine for codebase analysis
- **Python 3.10+**: Core runtime
## ๐Ÿ” Secrets & API Keys
Add secrets in Hugging Face Space โ†’ **Settings โ†’ Repository secrets**:
| Secret | Purpose |
| --- | --- |
| `ANTHROPIC_API_KEY` | Required for Claude agents |
| `GOOGLE_API_KEY` / `GEMINI_API_KEY` | Enable Gemini sponsor synthesis |
| `OPENAI_API_KEY` | Enable OpenAI sponsor synthesis |
| `SPONSOR_LLM_PRIORITY` | Optional ordering, e.g. `gemini,openai` |
| `GEMINI_MODEL`, `OPENAI_MODEL` | Optional model overrides |
| `HF_TOKEN` | Optional Hugging Face MCP access |
| `GITHUB_TOKEN`, `GITHUB_REPO`, `GITHUB_BRANCH` | GitHub deployment actions |
## ๐Ÿ“ License
MIT License
## ๐Ÿ”— Social Media
[Link to your social media post about the project] <!-- REQUIRED: Add your LinkedIn/X post link here -->
## ๐ŸŽฅ Demo Video
[Link to your demo video] <!-- REQUIRED: Add your demo video link here -->
---
**Built for MCP's 1st Birthday Hackathon** ๐ŸŽ‰