Spaces:
Sleeping
Sleeping
| import os | |
| from openai import OpenAI | |
| from utils.errors import APIError | |
| class LLMManager: | |
| def __init__(self, config, prompts): | |
| self.config = config | |
| self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key) | |
| self.prompts = prompts | |
| self.is_demo = os.getenv("IS_DEMO") | |
| self.demo_word_limit = os.getenv("DEMO_WORD_LIMIT") | |
| self.status = self.test_llm() | |
| if self.status: | |
| self.streaming = self.test_llm_stream() | |
| else: | |
| self.streaming = False | |
| if self.streaming: | |
| self.end_interview = self.end_interview_stream | |
| else: | |
| self.end_interview = self.end_interview_full | |
| def text_processor(self): | |
| def ans_full(response): | |
| return response | |
| def ans_stream(response): | |
| yield from response | |
| if self.streaming: | |
| return ans_full | |
| else: | |
| return ans_stream | |
| def get_text(self, messages): | |
| try: | |
| response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1) | |
| if not response.choices: | |
| raise APIError("LLM Get Text Error", details="No choices in response") | |
| return response.choices[0].message.content.strip() | |
| except Exception as e: | |
| raise APIError(f"LLM Get Text Error: Unexpected error: {e}") | |
| def get_text_stream(self, messages): | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.config.llm.name, | |
| messages=messages, | |
| temperature=1, | |
| stream=True, | |
| ) | |
| except Exception as e: | |
| raise APIError(f"LLM End Interview Error: Unexpected error: {e}") | |
| text = "" | |
| for chunk in response: | |
| if chunk.choices[0].delta.content: | |
| text += chunk.choices[0].delta.content | |
| yield text | |
| test_messages = [ | |
| {"role": "system", "content": "You just help me test the connection."}, | |
| {"role": "user", "content": "Hi!"}, | |
| {"role": "user", "content": "Ping!"}, | |
| ] | |
| def test_llm(self): | |
| try: | |
| self.get_text(self.test_messages) | |
| return True | |
| except: | |
| return False | |
| def test_llm_stream(self): | |
| try: | |
| for _ in self.get_text_stream(self.test_messages): | |
| pass | |
| return True | |
| except: | |
| return False | |
| def init_bot(self, problem=""): | |
| system_prompt = self.prompts["coding_interviewer_prompt"] | |
| if self.is_demo: | |
| system_prompt += f" Keep your responses very short and simple, no more than {self.demo_word_limit} words." | |
| return [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "system", "content": f"The candidate is solving the following problem: {problem}"}, | |
| ] | |
| def get_problem(self, requirements, difficulty, topic): | |
| full_prompt = ( | |
| f"Create a {difficulty} {topic} coding problem. " | |
| f"Additional requirements: {requirements}. " | |
| "The problem should be clearly stated, well-formatted, and solvable within 30 minutes. " | |
| "Ensure the problem varies each time to provide a wide range of challenges." | |
| ) | |
| if self.is_demo: | |
| full_prompt += f" Keep your response very short and simple, no more than {self.demo_word_limit} words." | |
| question = self.get_text( | |
| [ | |
| {"role": "system", "content": self.prompts["problem_generation_prompt"]}, | |
| {"role": "user", "content": full_prompt}, | |
| ] | |
| ) | |
| chat_history = self.init_bot(question) | |
| return question, chat_history | |
| def send_request(self, code, previous_code, message, chat_history, chat_display): | |
| if code != previous_code: | |
| chat_history.append({"role": "user", "content": f"My latest code:\n{code}"}) | |
| chat_history.append({"role": "user", "content": message}) | |
| reply = self.get_text(chat_history) | |
| chat_history.append({"role": "assistant", "content": reply}) | |
| if chat_display: | |
| chat_display[-1][1] = reply | |
| else: | |
| chat_display.append([message, reply]) | |
| return chat_history, chat_display, "", code | |
| # TODO: implement both streaming and non-streaming versions | |
| def end_interview_prepare_messages(self, problem_description, chat_history): | |
| transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]] | |
| system_prompt = self.prompts["grading_feedback_prompt"] | |
| if self.is_demo: | |
| system_prompt += f" Keep your response very short and simple, no more than {self.demo_word_limit} words." | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": f"The original problem to solve: {problem_description}"}, | |
| {"role": "user", "content": "\n\n".join(transcript)}, | |
| {"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."}, | |
| ] | |
| return messages | |
| def end_interview_full(self, problem_description, chat_history): | |
| if len(chat_history) <= 2: | |
| return "No interview history available" | |
| else: | |
| messages = self.end_interview_prepare_messages(problem_description, chat_history) | |
| return self.get_text_stream(messages) | |
| def end_interview_stream(self, problem_description, chat_history): | |
| if len(chat_history) <= 2: | |
| yield "No interview history available" | |
| else: | |
| messages = self.end_interview_prepare_messages(problem_description, chat_history) | |
| yield from self.get_text_stream(messages) | |