Update classifier.py
Browse files- classifier.py +2 -4
classifier.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
import torch
|
| 3 |
from model_loader import classifier_model
|
| 4 |
from paraphraser import paraphrase_comment
|
| 5 |
-
from metrics import compute_semantic_similarity, compute_empathy_score,
|
| 6 |
|
| 7 |
def classify_toxic_comment(comment):
|
| 8 |
"""
|
|
@@ -48,7 +48,6 @@ def classify_toxic_comment(comment):
|
|
| 48 |
paraphrased_bias_score = None
|
| 49 |
semantic_similarity = None
|
| 50 |
empathy_score = None
|
| 51 |
-
bleu_score = None
|
| 52 |
rouge_scores = None
|
| 53 |
|
| 54 |
if label == "Toxic":
|
|
@@ -73,12 +72,11 @@ def classify_toxic_comment(comment):
|
|
| 73 |
# Compute essential metrics
|
| 74 |
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
| 75 |
empathy_score = compute_empathy_score(paraphrased_comment)
|
| 76 |
-
bleu_score = compute_bleu_score(comment, paraphrased_comment)
|
| 77 |
rouge_scores = compute_rouge_score(comment, paraphrased_comment)
|
| 78 |
|
| 79 |
return (
|
| 80 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
| 81 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
| 82 |
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 83 |
-
semantic_similarity, empathy_score,
|
| 84 |
)
|
|
|
|
| 2 |
import torch
|
| 3 |
from model_loader import classifier_model
|
| 4 |
from paraphraser import paraphrase_comment
|
| 5 |
+
from metrics import compute_semantic_similarity, compute_empathy_score, compute_rouge_score
|
| 6 |
|
| 7 |
def classify_toxic_comment(comment):
|
| 8 |
"""
|
|
|
|
| 48 |
paraphrased_bias_score = None
|
| 49 |
semantic_similarity = None
|
| 50 |
empathy_score = None
|
|
|
|
| 51 |
rouge_scores = None
|
| 52 |
|
| 53 |
if label == "Toxic":
|
|
|
|
| 72 |
# Compute essential metrics
|
| 73 |
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
| 74 |
empathy_score = compute_empathy_score(paraphrased_comment)
|
|
|
|
| 75 |
rouge_scores = compute_rouge_score(comment, paraphrased_comment)
|
| 76 |
|
| 77 |
return (
|
| 78 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
| 79 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
| 80 |
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 81 |
+
semantic_similarity, empathy_score, rouge_scores
|
| 82 |
)
|