Update app.py
Browse files
app.py
CHANGED
|
@@ -185,7 +185,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 185 |
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
|
| 186 |
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
|
| 187 |
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
|
| 188 |
-
bleu_score_output = gr.Textbox(label="BLEU Score", placeholder="BLEU score will appear here...")
|
| 189 |
rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
|
| 190 |
|
| 191 |
with gr.Row():
|
|
@@ -210,7 +209,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 210 |
prediction, confidence, color, toxicity_score, bias_score,
|
| 211 |
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
|
| 212 |
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 213 |
-
semantic_similarity, empathy_score,
|
| 214 |
) = classify_toxic_comment(comment)
|
| 215 |
|
| 216 |
history.append({
|
|
@@ -226,7 +225,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 226 |
"paraphrased_bias_score": paraphrased_bias_score,
|
| 227 |
"semantic_similarity": semantic_similarity,
|
| 228 |
"empathy_score": empathy_score,
|
| 229 |
-
"bleu_score": bleu_score,
|
| 230 |
"rouge_scores": rouge_scores
|
| 231 |
})
|
| 232 |
|
|
@@ -247,7 +245,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 247 |
)
|
| 248 |
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
|
| 249 |
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
|
| 250 |
-
bleu_score_display = f"{bleu_score} (Scale: 0 to 1, higher is better)" if bleu_score is not None else "N/A"
|
| 251 |
rouge_scores_display = (
|
| 252 |
f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
|
| 253 |
if rouge_scores else "N/A"
|
|
@@ -261,7 +258,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 261 |
toxicity_display, bias_display,
|
| 262 |
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
|
| 263 |
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
|
| 264 |
-
semantic_similarity_display, empathy_score_display,
|
| 265 |
)
|
| 266 |
|
| 267 |
def handle_feedback(feedback, comment):
|
|
@@ -282,7 +279,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 282 |
toxicity_output, bias_output,
|
| 283 |
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 284 |
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 285 |
-
semantic_similarity_output, empathy_score_output,
|
| 286 |
]
|
| 287 |
).then(
|
| 288 |
fn=handle_classification,
|
|
@@ -292,7 +289,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 292 |
toxicity_output, bias_output,
|
| 293 |
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 294 |
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 295 |
-
semantic_similarity_output, empathy_score_output,
|
| 296 |
]
|
| 297 |
).then(
|
| 298 |
fn=lambda prediction, confidence, html: html,
|
|
@@ -317,7 +314,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 317 |
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
|
| 318 |
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 319 |
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 320 |
-
semantic_similarity_output, empathy_score_output,
|
| 321 |
]
|
| 322 |
)
|
| 323 |
|
|
|
|
| 185 |
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
|
| 186 |
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
|
| 187 |
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
|
|
|
|
| 188 |
rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
|
| 189 |
|
| 190 |
with gr.Row():
|
|
|
|
| 209 |
prediction, confidence, color, toxicity_score, bias_score,
|
| 210 |
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
|
| 211 |
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 212 |
+
semantic_similarity, empathy_score, rouge_scores
|
| 213 |
) = classify_toxic_comment(comment)
|
| 214 |
|
| 215 |
history.append({
|
|
|
|
| 225 |
"paraphrased_bias_score": paraphrased_bias_score,
|
| 226 |
"semantic_similarity": semantic_similarity,
|
| 227 |
"empathy_score": empathy_score,
|
|
|
|
| 228 |
"rouge_scores": rouge_scores
|
| 229 |
})
|
| 230 |
|
|
|
|
| 245 |
)
|
| 246 |
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
|
| 247 |
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
|
|
|
|
| 248 |
rouge_scores_display = (
|
| 249 |
f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
|
| 250 |
if rouge_scores else "N/A"
|
|
|
|
| 258 |
toxicity_display, bias_display,
|
| 259 |
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
|
| 260 |
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
|
| 261 |
+
semantic_similarity_display, empathy_score_display, rouge_scores_display
|
| 262 |
)
|
| 263 |
|
| 264 |
def handle_feedback(feedback, comment):
|
|
|
|
| 279 |
toxicity_output, bias_output,
|
| 280 |
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 281 |
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 282 |
+
semantic_similarity_output, empathy_score_output, rouge_scores_output
|
| 283 |
]
|
| 284 |
).then(
|
| 285 |
fn=handle_classification,
|
|
|
|
| 289 |
toxicity_output, bias_output,
|
| 290 |
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 291 |
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 292 |
+
semantic_similarity_output, empathy_score_output, rouge_scores_output
|
| 293 |
]
|
| 294 |
).then(
|
| 295 |
fn=lambda prediction, confidence, html: html,
|
|
|
|
| 314 |
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
|
| 315 |
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 316 |
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 317 |
+
semantic_similarity_output, empathy_score_output, rouge_scores_output
|
| 318 |
]
|
| 319 |
)
|
| 320 |
|