File size: 24,989 Bytes
3dcb100 950252a 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 950252a 3dcb100 b2192d5 3dcb100 b2192d5 3dcb100 950252a 3dcb100 68b914c 3dcb100 950252a 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 950252a 3dcb100 950252a 3dcb100 950252a 3dcb100 950252a 3dcb100 0bc9661 3dcb100 0bc9661 950252a 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 950252a 0bc9661 950252a 0bc9661 950252a 3dcb100 0bc9661 3dcb100 950252a 0bc9661 950252a 0bc9661 950252a 0bc9661 950252a 0bc9661 3dcb100 4cb338c ed059ef db894ec 3dcb100 0bc9661 3dcb100 0bc9661 3dcb100 0bc9661 68b914c 950252a 0bc9661 950252a 68b914c 950252a 0bc9661 3dcb100 4cb338c 3dcb100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
import os
import re
import gc
import sys
import time
import json
import queue
import random
import asyncio
import threading
import requests
import collections
import torch
import numpy as np
from typing import List, Optional, Dict, Any, Literal, Union
from pydantic import BaseModel, Field, model_validator
from pydantic_settings import BaseSettings
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.gzip import GZipMiddleware
from huggingface_hub import hf_hub_download
from snowflake import SnowflakeGenerator
if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
from modelscope import patch_hub
patch_hub()
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
os.environ["RWKV_V7_ON"] = "1"
os.environ["RWKV_JIT_ON"] = "1"
os.environ["RWKV_CUDA_ON"] = "1"
GPU_LOCK = asyncio.Lock()
class ChatMessage(BaseModel):
role: str = Field()
content: str = Field()
name: Optional[str] = Field(None)
tool_call_id: Optional[str] = Field(None)
class Logprob(BaseModel):
token: str
logprob: float
top_logprobs: Optional[List[Dict[str, Any]]] = None
class LogprobsContent(BaseModel):
content: Optional[List[Logprob]] = None
refusal: Optional[List[Logprob]] = None
class ChatCompletionMessage(BaseModel):
role: Optional[str] = Field(None)
content: Optional[str] = Field(None)
reasoning_content: Optional[str] = Field(None)
tool_calls: Optional[List[Dict[str, Any]]] = Field(None)
class PromptTokensDetails(BaseModel):
cached_tokens: int
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: Optional[PromptTokensDetails] = None
class ChatCompletionChoice(BaseModel):
index: int
message: Optional[ChatCompletionMessage] = None
delta: Optional[ChatCompletionMessage] = None
logprobs: Optional[LogprobsContent] = None
finish_reason: Optional[str] = Field(...)
class ChatCompletionChunk(BaseModel):
id: str = Field(...)
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(...)
model: str
choices: List[ChatCompletionChoice]
usage: Optional[Usage] = None
class ToolFunction(BaseModel):
name: str
description: str
parameters: Dict[str, Any]
class Tool(BaseModel):
type: Literal["function"] = "function"
function: ToolFunction
def remove_nested_think_tags_stack(text):
stack = []
result = ""
i = 0
while i < len(text):
if text[i : i + 7] == "<think>":
stack.append("<think>")
i += 7
elif text[i : i + 8] == "</think>":
if stack and stack[-1] == "<think>":
stack.pop()
i += 8
else:
result += text[i : i + 8]
i += 8
elif not stack:
result += text[i]
i += 1
else:
i += 1
return result
def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = False):
promptStrList = []
# Safety check in case messages is None
if not messages:
return ""
for message in messages:
content = message.content.strip()
content = re.sub(r"\n+", "\n", content)
role_str = message.role.strip().lower().capitalize()
if role_str == 'Assistant' and removeThinkingContent:
content = remove_nested_think_tags_stack(content)
if message.role == "tool":
promptStrList.append(f"Tool Output ({message.name}): {content}")
elif message.role == "system":
promptStrList.append(f"System: {content}")
elif message.role == "user":
promptStrList.append(f"User: {content}")
elif message.role == "assistant":
promptStrList.append(f"Assistant: {content}")
else:
promptStrList.append(f"{role_str}: {content}")
return "\n\n".join(promptStrList)
class SamplerConfig(BaseModel):
max_tokens: int = 4096
temperature: float = 1.0
top_p: float = 0.3
presence_penalty: float = 0.5
count_penalty: float = 0.5
penalty_decay: float = 0.996
stop: List[str] = ["\n\n"]
stop_tokens: List[int] = [0]
class ModelConfig(BaseModel):
SERVICE_NAME: str
DOWNLOAD_MODEL_FILE_NAME: str
DOWNLOAD_MODEL_REPO_ID: str
DOWNLOAD_MODEL_DIR: str = "models"
MODEL_FILE_PATH: Optional[str] = None
DEFAULT_CHAT: bool = False
DEFAULT_REASONING: bool = False
REASONING: bool = False
VOCAB: str = "rwkv_vocab_v20230424"
CTX_LEN: int = 4096
DEFAULT_SAMPLER: SamplerConfig = Field(default_factory=SamplerConfig)
class Config(BaseSettings):
HOST: str = "0.0.0.0"
PORT: int = 7860
STRATEGY: str = "cuda fp16"
RWKV_CUDA_ON: bool = True
CHUNK_LEN: int = 256
MODELS: List[ModelConfig] = [
ModelConfig(
SERVICE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
CTX_LEN=8192
),
ModelConfig(
SERVICE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
CTX_LEN=8192
),
ModelConfig(
SERVICE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
CTX_LEN=4096
),
ModelConfig(
SERVICE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
DEFAULT_CHAT=True,
DEFAULT_REASONING=True,
CTX_LEN=4096
),
]
CONFIG = Config()
try:
from duckduckgo_search import DDGS
HAS_DDG = True
except ImportError:
HAS_DDG = False
try:
from faker import Faker
fake = Faker()
HAS_FAKER = True
except ImportError:
HAS_FAKER = False
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
CONFIG.STRATEGY = "cpu fp16"
CONFIG.RWKV_CUDA_ON = False
if CONFIG.RWKV_CUDA_ON and "cuda" in CONFIG.STRATEGY.lower():
from pynvml import *
nvmlInit()
os.environ["RWKV_CUDA_ON"] = "1"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
else:
os.environ["RWKV_CUDA_ON"] = "0"
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
class ModelStorage:
MODEL_CONFIG: Optional[ModelConfig] = None
model: Optional[RWKV] = None
pipeline: Optional[PIPELINE] = None
MODEL_STORAGE: Dict[str, ModelStorage] = {}
DEFALUT_MODEL_NAME = None
DEFAULT_REASONING_MODEL_NAME = None
for model_config in CONFIG.MODELS:
if model_config.MODEL_FILE_PATH is None:
model_config.MODEL_FILE_PATH = hf_hub_download(
repo_id=model_config.DOWNLOAD_MODEL_REPO_ID,
filename=model_config.DOWNLOAD_MODEL_FILE_NAME,
local_dir=model_config.DOWNLOAD_MODEL_DIR,
)
if model_config.DEFAULT_CHAT:
DEFALUT_MODEL_NAME = model_config.SERVICE_NAME
if model_config.DEFAULT_REASONING:
DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME
MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage()
MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config
MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV(
model=model_config.MODEL_FILE_PATH.replace(".pth", ""),
strategy=CONFIG.STRATEGY,
)
MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE(
MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB
)
if "cuda" in CONFIG.STRATEGY:
torch.cuda.empty_cache()
gc.collect()
class ChatCompletionRequest(BaseModel):
model: str = Field(default="rwkv-latest")
messages: Optional[List[ChatMessage]] = Field(default=None)
prompt: Optional[str] = Field(default=None)
max_tokens: Optional[int] = Field(default=None)
temperature: Optional[float] = Field(default=None)
top_p: Optional[float] = Field(default=None)
presence_penalty: Optional[float] = Field(default=None)
count_penalty: Optional[float] = Field(default=None)
penalty_decay: Optional[float] = Field(default=None)
stream: Optional[bool] = Field(default=False)
stop: Optional[List[str]] = Field(["\n\n"])
stop_tokens: Optional[List[int]] = Field([0])
tools: Optional[List[Tool]] = Field(default=None)
tool_choice: Optional[Union[str, Dict]] = Field(default="auto")
@model_validator(mode="before")
@classmethod
def validate_mutual_exclusivity(cls, data: Any) -> Any:
if not isinstance(data, dict): return data
if "messages" in data and "prompt" in data and data["messages"] and data["prompt"]:
raise ValueError("messages and prompt cannot coexist.")
return data
class ToolEngine:
TOOL_SYSTEM_PROMPT = """
CAPABILITY: You have access to real-time tools.
INSTRUCTION: To use a tool, output exactly: <call>tool_name("argument")</call>
Do not describe the tool, just call it. After the System provides the result, synthesize the answer.
AVAILABLE TOOLS:
1. google_search(query): Searches Google and DuckDuckGo for real-time information.
2. visit_page(url): Accesses a specific link, reads the text, and finds sub-links.
""".strip()
@staticmethod
def google_search_request(query: str) -> str:
try:
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"}
resp = requests.get("https://www.google.com/search", params={"q": query, "gl": "us", "hl": "en"}, headers=headers, timeout=6)
if resp.status_code != 200: raise Exception("Google blocked request")
clean_text = re.sub(r'<script.*?>.*?</script>', '', resp.text, flags=re.DOTALL)
clean_text = re.sub(r'<style.*?>.*?</style>', '', clean_text, flags=re.DOTALL)
headings = re.findall(r'<h3.*?>(.*?)</h3>', clean_text)
links = re.findall(r'<a href="/url\?q=(.*?)&', clean_text)
limit = min(len(headings), len(links), 5)
output = "Google Results:\n"
for i in range(limit):
output += f"{i+1}. {re.sub(r'<.*?>', '', headings[i])} - Link: {links[i]}\n"
if not headings:
return ToolEngine.duckduckgo_fallback(query)
return output
except:
return ToolEngine.duckduckgo_fallback(query)
@staticmethod
def duckduckgo_fallback(query: str) -> str:
try:
if HAS_DDG:
res = DDGS().text(query, max_results=5)
return "\n".join([f"- {r['title']}: {r['body']} ({r['href']})" for r in res])
resp = requests.get("https://html.duckduckgo.com/html/", params={"q": query}, headers={"User-Agent": "Mozilla/5.0"}, timeout=5)
titles = re.findall(r'<a class="result__a"[^>]*>(.*?)</a>', resp.text)
snippets = re.findall(r'<a class="result__snippet"[^>]*>(.*?)</a>', resp.text)
limit = min(len(titles), len(snippets), 4)
out = "DuckDuckGo HTML Results:\n"
for i in range(limit):
t = re.sub(r'<.*?>', '', titles[i]).strip()
s = re.sub(r'<.*?>', '', snippets[i]).strip()
out += f"{i+1}. {t}: {s}\n"
return out
except Exception as e:
return f"Search failed: {str(e)}"
@staticmethod
def visit_page(url: str) -> str:
try:
headers = {"User-Agent": "Mozilla/5.0 (compatible; RWKV-Bot/1.0)"}
resp = requests.get(url, headers=headers, timeout=8)
resp.encoding = resp.apparent_encoding
text = re.sub(r'<head.*?>.*?</head>', '', resp.text, flags=re.DOTALL)
text = re.sub(r'<script.*?>.*?</script>', '', text, flags=re.DOTALL)
text = re.sub(r'<style.*?>.*?</style>', '', text, flags=re.DOTALL)
text = re.sub(r'<!--.*?-->', '', text, flags=re.DOTALL)
text = re.sub(r'<[^>]+>', ' ', text)
text = re.sub(r'\s+', ' ', text).strip()
links = re.findall(r'href=["\'](http[s]?://[^"\']+)["\']', resp.text)
unique_links = list(set(links))[:5]
content_preview = text[:3000] + ("..." if len(text) > 3000 else "")
return f"PAGE CONTENT ({url}):\n{content_preview}\n\nFOUND SUB-LINKS:\n" + "\n".join(unique_links)
except Exception as e:
return f"Error visiting page: {str(e)}"
@staticmethod
def execute(call_str: str) -> str:
try:
match = re.match(r'(\w+)\(["\'](.*?)["\']\)', call_str)
if not match: return "Invalid tool call syntax."
func, arg = match.groups()
if func == "google_search":
return ToolEngine.google_search_request(arg)
elif func == "visit_page":
return ToolEngine.visit_page(arg)
else:
return f"Unknown tool: {func}"
except Exception as e:
return f"Tool execution error: {e}"
app = FastAPI(title="RWKV Ultimate Agent Server")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)
@app.middleware("http")
async def privacy_middleware(request: Request, call_next):
if HAS_FAKER:
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
return await call_next(request)
def prune_context(messages: List[ChatMessage], model_name: str, max_gen_tokens: int):
storage = MODEL_STORAGE[model_name]
limit = storage.MODEL_CONFIG.CTX_LEN
pipeline = storage.pipeline
current_text = cleanMessages(messages)
tokens = pipeline.encode(current_text)
if len(tokens) + max_gen_tokens < limit:
return messages
system_msgs = [m for m in messages if m.role == "System"]
other_msgs = [m for m in messages if m.role != "System"]
while len(other_msgs) > 1:
candidate_text = cleanMessages(system_msgs + other_msgs)
if len(pipeline.encode(candidate_text)) + max_gen_tokens < limit:
break
other_msgs.pop(0)
return system_msgs + other_msgs
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
ctx = ctx.replace("\r\n", "\n")
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
model_tokens.extend([int(x) for x in tokens])
while len(tokens) > 0:
out, model_state = MODEL_STORAGE[request.model].model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
tokens = tokens[CONFIG.CHUNK_LEN :]
await asyncio.sleep(0)
return out, model_tokens, model_state
def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048):
args = PIPELINE_ARGS(
temperature=request.temperature,
top_p=request.top_p,
alpha_frequency=request.count_penalty,
alpha_presence=request.presence_penalty,
token_ban=[], token_stop=[0]
)
occurrence = {}
out_tokens = []
out_last = 0
cache_word_list = []
stop_sequences = request.stop if request.stop else []
stop_sequences.append("<call>")
for i in range(max_tokens):
for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token == 0:
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
del out; gc.collect(); return
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
model_tokens.append(token)
out_tokens.append(token)
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
occurrence[token] = 1 + (occurrence.get(token, 0))
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
if "\ufffd" in tmp: continue
cache_word_list.append(tmp)
out_last = i + 1
current_buffer = "".join(cache_word_list)
if "<call>" in current_buffer:
pre_call = current_buffer.split("<call>")[0]
yield {"content": pre_call, "finish_reason": "tool_start", "state": model_state}
del out; gc.collect(); return
for s in stop_sequences:
if s in current_buffer and s != "<call>":
final_content = current_buffer.split(s)[0]
yield {"content": final_content, "finish_reason": "stop", "state": model_state}
del out; gc.collect(); return
if len(cache_word_list) > 2:
yield {"content": cache_word_list.pop(0), "finish_reason": None}
yield {"content": "".join(cache_word_list), "finish_reason": "length"}
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
current_messages = request.messages
for step in range(4):
clean_msg = cleanMessages(current_messages, enableReasoning)
prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}"
tool_call_mode = False
async with GPU_LOCK:
try:
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
if step == 0:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096):
content = chunk.get("content", "")
finish = chunk.get("finish_reason", None)
if finish == "tool_start":
tool_call_mode = True
if content:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
break
if content:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
if finish:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=''), finish_reason=finish)]).model_dump_json()}\n\n"
return
finally:
pass
if tool_call_mode:
full_tool_call = ""
async with GPU_LOCK:
try:
tool_out, tool_tokens, tool_state = await runPrefill(request, "", [0], model_state)
current_gen = ""
for i in range(200):
tool_token = MODEL_STORAGE[request.model].pipeline.sample_logits(tool_out, temperature=0.1, top_p=0.1)
tool_out, tool_state = MODEL_STORAGE[request.model].model.forward([tool_token], tool_state)
char = MODEL_STORAGE[request.model].pipeline.decode([tool_token])
current_gen += char
if "</call>" in current_gen:
full_tool_call = current_gen.split("</call>")[0]
break
finally:
pass
if full_tool_call:
result = ToolEngine.execute(full_tool_call)
current_messages.append(ChatMessage(role="assistant", content=f"<call>{full_tool_call}</call>"))
current_messages.append(ChatMessage(role="tool", content=result, name="system"))
else:
break
else:
break
yield "data: [DONE]\n\n"
@app.post("/v1/chat/completions")
@app.post("/v1/chat/")
@app.post("/v1/completions")
@app.post("/v1/responses")
@app.post("/responses")
@app.post("/api/generate")
@app.post("/api/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
completionId = str(next(CompletionIdGenerator))
raw_model = request.model
model_key = request.model.split(":")[0].replace(":online", "")
is_reasoning = ":thinking" in request.model
target_model = model_key
if "rwkv-latest" in model_key:
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME
elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME
if target_model not in MODEL_STORAGE:
raise HTTPException(404, f"Model {target_model} not loaded.")
request.model = target_model
default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER
req_data = request.model_dump()
for k, v in default_sampler.model_dump().items():
if req_data.get(k) is None: req_data[k] = v
realRequest = ChatCompletionRequest(**req_data)
# FIX: Handle missing messages (legacy completion API support)
if realRequest.messages is None:
if realRequest.prompt:
realRequest.messages = [ChatMessage(role="user", content=realRequest.prompt)]
else:
# Fallback to empty list to prevent crashes in prune_context/cleanMessages
realRequest.messages = []
enable_tools = ":online" in raw_model or realRequest.tools is not None
if enable_tools:
sys_msg = ChatMessage(role="System", content=ToolEngine.TOOL_SYSTEM_PROMPT)
if realRequest.messages:
if realRequest.messages[0].role == "System":
realRequest.messages[0].content += f"\n\n{ToolEngine.TOOL_SYSTEM_PROMPT}"
else:
realRequest.messages.insert(0, sys_msg)
else:
realRequest.messages.append(sys_msg)
realRequest.messages = prune_context(realRequest.messages, target_model, realRequest.max_tokens or 1024)
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
@app.get("/api/v1/models")
@app.get("/v1/models")
@app.get("/models")
async def list_models():
models_list = []
ts = int(time.time())
for model_id in MODEL_STORAGE.keys():
models_list.append({"id": model_id, "object": "model", "created": ts, "owned_by": "rwkv-server"})
models_list.append({"id": f"{model_id}:online", "object": "model", "created": ts, "owned_by": "rwkv-server"})
if DEFALUT_MODEL_NAME:
models_list.append({"id": "rwkv-latest", "object": "model", "created": ts, "owned_by": "rwkv-system"})
models_list.append({"id": "rwkv-latest:online", "object": "model", "created": ts, "owned_by": "rwkv-system"})
if DEFAULT_REASONING_MODEL_NAME:
models_list.append({"id": "rwkv-latest:thinking", "object": "model", "created": ts, "owned_by": "rwkv-system"})
models_list.append({"id": "rwkv-latest:thinking:online", "object": "model", "created": ts, "owned_by": "rwkv-system"})
return {"object": "list", "data": models_list}
app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT) |