File size: 24,989 Bytes
3dcb100
 
 
 
 
950252a
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
3dcb100
 
0bc9661
 
 
3dcb100
 
 
 
950252a
 
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2192d5
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
b2192d5
3dcb100
950252a
 
 
 
 
 
 
 
 
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b914c
 
 
 
3dcb100
 
 
 
 
 
950252a
 
 
 
 
 
 
 
 
 
 
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
 
3dcb100
 
 
 
 
0bc9661
 
3dcb100
 
 
 
 
0bc9661
 
3dcb100
 
 
 
 
 
 
0bc9661
 
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
950252a
 
3dcb100
 
 
 
 
 
 
 
 
950252a
 
 
 
 
 
 
 
 
3dcb100
 
 
950252a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcb100
 
950252a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
 
950252a
0bc9661
3dcb100
 
 
0bc9661
3dcb100
 
 
0bc9661
3dcb100
 
 
0bc9661
3dcb100
 
0bc9661
3dcb100
 
 
 
0bc9661
 
950252a
 
 
 
 
 
0bc9661
950252a
0bc9661
 
 
 
950252a
3dcb100
0bc9661
3dcb100
 
 
950252a
0bc9661
950252a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
950252a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc9661
950252a
 
 
 
 
 
 
 
0bc9661
3dcb100
 
4cb338c
ed059ef
 
 
 
db894ec
3dcb100
 
 
 
 
 
 
 
 
 
0bc9661
3dcb100
 
 
0bc9661
3dcb100
 
 
 
 
0bc9661
68b914c
 
 
 
 
 
 
 
950252a
0bc9661
950252a
 
 
 
 
 
 
68b914c
 
950252a
0bc9661
 
3dcb100
 
 
4cb338c
3dcb100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import os
import re
import gc
import sys
import time
import json
import queue
import random
import asyncio
import threading
import requests
import collections
import torch
import numpy as np
from typing import List, Optional, Dict, Any, Literal, Union
from pydantic import BaseModel, Field, model_validator
from pydantic_settings import BaseSettings
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.gzip import GZipMiddleware
from huggingface_hub import hf_hub_download
from snowflake import SnowflakeGenerator

if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
    from modelscope import patch_hub
    patch_hub()

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
os.environ["RWKV_V7_ON"] = "1"
os.environ["RWKV_JIT_ON"] = "1"
os.environ["RWKV_CUDA_ON"] = "1"

GPU_LOCK = asyncio.Lock()

class ChatMessage(BaseModel):
    role: str = Field()
    content: str = Field()
    name: Optional[str] = Field(None)
    tool_call_id: Optional[str] = Field(None)

class Logprob(BaseModel):
    token: str
    logprob: float
    top_logprobs: Optional[List[Dict[str, Any]]] = None

class LogprobsContent(BaseModel):
    content: Optional[List[Logprob]] = None
    refusal: Optional[List[Logprob]] = None

class ChatCompletionMessage(BaseModel):
    role: Optional[str] = Field(None)
    content: Optional[str] = Field(None)
    reasoning_content: Optional[str] = Field(None)
    tool_calls: Optional[List[Dict[str, Any]]] = Field(None)

class PromptTokensDetails(BaseModel):
    cached_tokens: int

class Usage(BaseModel):
    prompt_tokens: int
    completion_tokens: int
    total_tokens: int
    prompt_tokens_details: Optional[PromptTokensDetails] = None

class ChatCompletionChoice(BaseModel):
    index: int
    message: Optional[ChatCompletionMessage] = None
    delta: Optional[ChatCompletionMessage] = None
    logprobs: Optional[LogprobsContent] = None
    finish_reason: Optional[str] = Field(...)

class ChatCompletionChunk(BaseModel):
    id: str = Field(...)
    object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
    created: int = Field(...)
    model: str
    choices: List[ChatCompletionChoice]
    usage: Optional[Usage] = None

class ToolFunction(BaseModel):
    name: str
    description: str
    parameters: Dict[str, Any]

class Tool(BaseModel):
    type: Literal["function"] = "function"
    function: ToolFunction

def remove_nested_think_tags_stack(text):
    stack = []
    result = ""
    i = 0
    while i < len(text):
        if text[i : i + 7] == "<think>":
            stack.append("<think>")
            i += 7
        elif text[i : i + 8] == "</think>":
            if stack and stack[-1] == "<think>":
                stack.pop()
                i += 8
            else:
                result += text[i : i + 8]
                i += 8
        elif not stack:
            result += text[i]
            i += 1
        else:
            i += 1
    return result

def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = False):
    promptStrList = []
    # Safety check in case messages is None
    if not messages:
        return ""
        
    for message in messages:
        content = message.content.strip()
        content = re.sub(r"\n+", "\n", content)
        role_str = message.role.strip().lower().capitalize()
        if role_str == 'Assistant' and removeThinkingContent:
            content = remove_nested_think_tags_stack(content)
        
        if message.role == "tool":
            promptStrList.append(f"Tool Output ({message.name}): {content}")
        elif message.role == "system":
            promptStrList.append(f"System: {content}")
        elif message.role == "user":
            promptStrList.append(f"User: {content}")
        elif message.role == "assistant":
            promptStrList.append(f"Assistant: {content}")
        else:
            promptStrList.append(f"{role_str}: {content}")
    return "\n\n".join(promptStrList)

class SamplerConfig(BaseModel):
    max_tokens: int = 4096
    temperature: float = 1.0
    top_p: float = 0.3
    presence_penalty: float = 0.5
    count_penalty: float = 0.5
    penalty_decay: float = 0.996
    stop: List[str] = ["\n\n"]
    stop_tokens: List[int] = [0]

class ModelConfig(BaseModel):
    SERVICE_NAME: str
    DOWNLOAD_MODEL_FILE_NAME: str
    DOWNLOAD_MODEL_REPO_ID: str
    DOWNLOAD_MODEL_DIR: str = "models"
    MODEL_FILE_PATH: Optional[str] = None
    DEFAULT_CHAT: bool = False
    DEFAULT_REASONING: bool = False
    REASONING: bool = False
    VOCAB: str = "rwkv_vocab_v20230424"
    CTX_LEN: int = 4096
    DEFAULT_SAMPLER: SamplerConfig = Field(default_factory=SamplerConfig)

class Config(BaseSettings):
    HOST: str = "0.0.0.0"
    PORT: int = 7860
    STRATEGY: str = "cuda fp16"
    RWKV_CUDA_ON: bool = True
    CHUNK_LEN: int = 256
    MODELS: List[ModelConfig] = [
        ModelConfig(
            SERVICE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192",
            DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192.pth",
            DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
            REASONING=True,
            CTX_LEN=8192
        ),
        ModelConfig(
            SERVICE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192",
            DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192.pth",
            DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
            REASONING=True,
            CTX_LEN=8192
        ),
        ModelConfig(
            SERVICE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096",
            DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096.pth",
            DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
            REASONING=True,
            CTX_LEN=4096
        ),
        ModelConfig(
            SERVICE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096",
            DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096.pth",
            DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
            REASONING=True,
            DEFAULT_CHAT=True,
            DEFAULT_REASONING=True,
            CTX_LEN=4096
        ),
    ]

CONFIG = Config()

try:
    from duckduckgo_search import DDGS
    HAS_DDG = True
except ImportError:
    HAS_DDG = False

try:
    from faker import Faker
    fake = Faker()
    HAS_FAKER = True
except ImportError:
    HAS_FAKER = False

CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)

if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
    CONFIG.STRATEGY = "cpu fp16"
    CONFIG.RWKV_CUDA_ON = False

if CONFIG.RWKV_CUDA_ON and "cuda" in CONFIG.STRATEGY.lower():
    from pynvml import *
    nvmlInit()
    os.environ["RWKV_CUDA_ON"] = "1"
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.allow_tf32 = True
    torch.backends.cuda.matmul.allow_tf32 = True
else:
    os.environ["RWKV_CUDA_ON"] = "0"

from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS

class ModelStorage:
    MODEL_CONFIG: Optional[ModelConfig] = None
    model: Optional[RWKV] = None
    pipeline: Optional[PIPELINE] = None

MODEL_STORAGE: Dict[str, ModelStorage] = {}
DEFALUT_MODEL_NAME = None
DEFAULT_REASONING_MODEL_NAME = None

for model_config in CONFIG.MODELS:
    if model_config.MODEL_FILE_PATH is None:
        model_config.MODEL_FILE_PATH = hf_hub_download(
            repo_id=model_config.DOWNLOAD_MODEL_REPO_ID,
            filename=model_config.DOWNLOAD_MODEL_FILE_NAME,
            local_dir=model_config.DOWNLOAD_MODEL_DIR,
        )
    if model_config.DEFAULT_CHAT:
        DEFALUT_MODEL_NAME = model_config.SERVICE_NAME
    if model_config.DEFAULT_REASONING:
        DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME
    
    MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage()
    MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config
    MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV(
        model=model_config.MODEL_FILE_PATH.replace(".pth", ""),
        strategy=CONFIG.STRATEGY,
    )
    MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE(
        MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB
    )
    if "cuda" in CONFIG.STRATEGY:
        torch.cuda.empty_cache()
        gc.collect()

class ChatCompletionRequest(BaseModel):
    model: str = Field(default="rwkv-latest")
    messages: Optional[List[ChatMessage]] = Field(default=None)
    prompt: Optional[str] = Field(default=None)
    max_tokens: Optional[int] = Field(default=None)
    temperature: Optional[float] = Field(default=None)
    top_p: Optional[float] = Field(default=None)
    presence_penalty: Optional[float] = Field(default=None)
    count_penalty: Optional[float] = Field(default=None)
    penalty_decay: Optional[float] = Field(default=None)
    stream: Optional[bool] = Field(default=False)
    stop: Optional[List[str]] = Field(["\n\n"])
    stop_tokens: Optional[List[int]] = Field([0])
    tools: Optional[List[Tool]] = Field(default=None)
    tool_choice: Optional[Union[str, Dict]] = Field(default="auto")

    @model_validator(mode="before")
    @classmethod
    def validate_mutual_exclusivity(cls, data: Any) -> Any:
        if not isinstance(data, dict): return data
        if "messages" in data and "prompt" in data and data["messages"] and data["prompt"]:
            raise ValueError("messages and prompt cannot coexist.")
        return data

class ToolEngine:
    TOOL_SYSTEM_PROMPT = """
CAPABILITY: You have access to real-time tools.
INSTRUCTION: To use a tool, output exactly: <call>tool_name("argument")</call>
Do not describe the tool, just call it. After the System provides the result, synthesize the answer.

AVAILABLE TOOLS:
1. google_search(query): Searches Google and DuckDuckGo for real-time information.
2. visit_page(url): Accesses a specific link, reads the text, and finds sub-links.
""".strip()

    @staticmethod
    def google_search_request(query: str) -> str:
        try:
            headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"}
            resp = requests.get("https://www.google.com/search", params={"q": query, "gl": "us", "hl": "en"}, headers=headers, timeout=6)
            
            if resp.status_code != 200: raise Exception("Google blocked request")
            
            clean_text = re.sub(r'<script.*?>.*?</script>', '', resp.text, flags=re.DOTALL)
            clean_text = re.sub(r'<style.*?>.*?</style>', '', clean_text, flags=re.DOTALL)
            
            headings = re.findall(r'<h3.*?>(.*?)</h3>', clean_text)
            links = re.findall(r'<a href="/url\?q=(.*?)&', clean_text)
            
            limit = min(len(headings), len(links), 5)
            output = "Google Results:\n"
            for i in range(limit):
                output += f"{i+1}. {re.sub(r'<.*?>', '', headings[i])} - Link: {links[i]}\n"
            
            if not headings:
                return ToolEngine.duckduckgo_fallback(query)
                
            return output
        except:
            return ToolEngine.duckduckgo_fallback(query)

    @staticmethod
    def duckduckgo_fallback(query: str) -> str:
        try:
            if HAS_DDG:
                res = DDGS().text(query, max_results=5)
                return "\n".join([f"- {r['title']}: {r['body']} ({r['href']})" for r in res])
            
            resp = requests.get("https://html.duckduckgo.com/html/", params={"q": query}, headers={"User-Agent": "Mozilla/5.0"}, timeout=5)
            titles = re.findall(r'<a class="result__a"[^>]*>(.*?)</a>', resp.text)
            snippets = re.findall(r'<a class="result__snippet"[^>]*>(.*?)</a>', resp.text)
            
            limit = min(len(titles), len(snippets), 4)
            out = "DuckDuckGo HTML Results:\n"
            for i in range(limit):
                t = re.sub(r'<.*?>', '', titles[i]).strip()
                s = re.sub(r'<.*?>', '', snippets[i]).strip()
                out += f"{i+1}. {t}: {s}\n"
            return out
        except Exception as e:
            return f"Search failed: {str(e)}"

    @staticmethod
    def visit_page(url: str) -> str:
        try:
            headers = {"User-Agent": "Mozilla/5.0 (compatible; RWKV-Bot/1.0)"}
            resp = requests.get(url, headers=headers, timeout=8)
            resp.encoding = resp.apparent_encoding
            
            text = re.sub(r'<head.*?>.*?</head>', '', resp.text, flags=re.DOTALL)
            text = re.sub(r'<script.*?>.*?</script>', '', text, flags=re.DOTALL)
            text = re.sub(r'<style.*?>.*?</style>', '', text, flags=re.DOTALL)
            text = re.sub(r'<!--.*?-->', '', text, flags=re.DOTALL)
            text = re.sub(r'<[^>]+>', ' ', text)
            text = re.sub(r'\s+', ' ', text).strip()
            
            links = re.findall(r'href=["\'](http[s]?://[^"\']+)["\']', resp.text)
            unique_links = list(set(links))[:5]
            
            content_preview = text[:3000] + ("..." if len(text) > 3000 else "")
            
            return f"PAGE CONTENT ({url}):\n{content_preview}\n\nFOUND SUB-LINKS:\n" + "\n".join(unique_links)
        except Exception as e:
            return f"Error visiting page: {str(e)}"

    @staticmethod
    def execute(call_str: str) -> str:
        try:
            match = re.match(r'(\w+)\(["\'](.*?)["\']\)', call_str)
            if not match: return "Invalid tool call syntax."
            
            func, arg = match.groups()
            
            if func == "google_search":
                return ToolEngine.google_search_request(arg)
            elif func == "visit_page":
                return ToolEngine.visit_page(arg)
            else:
                return f"Unknown tool: {func}"
        except Exception as e:
            return f"Tool execution error: {e}"

app = FastAPI(title="RWKV Ultimate Agent Server")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)

@app.middleware("http")
async def privacy_middleware(request: Request, call_next):
    if HAS_FAKER:
        request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
    return await call_next(request)

def prune_context(messages: List[ChatMessage], model_name: str, max_gen_tokens: int):
    storage = MODEL_STORAGE[model_name]
    limit = storage.MODEL_CONFIG.CTX_LEN
    pipeline = storage.pipeline
    
    current_text = cleanMessages(messages)
    tokens = pipeline.encode(current_text)
    
    if len(tokens) + max_gen_tokens < limit:
        return messages
        
    system_msgs = [m for m in messages if m.role == "System"]
    other_msgs = [m for m in messages if m.role != "System"]
    
    while len(other_msgs) > 1:
        candidate_text = cleanMessages(system_msgs + other_msgs)
        if len(pipeline.encode(candidate_text)) + max_gen_tokens < limit:
            break
        other_msgs.pop(0)
    
    return system_msgs + other_msgs

async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
    ctx = ctx.replace("\r\n", "\n")
    tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
    model_tokens.extend([int(x) for x in tokens])
    while len(tokens) > 0:
        out, model_state = MODEL_STORAGE[request.model].model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
        tokens = tokens[CONFIG.CHUNK_LEN :]
        await asyncio.sleep(0)
    return out, model_tokens, model_state

def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048):
    args = PIPELINE_ARGS(
        temperature=request.temperature,
        top_p=request.top_p,
        alpha_frequency=request.count_penalty,
        alpha_presence=request.presence_penalty,
        token_ban=[], token_stop=[0]
    )
    occurrence = {}
    out_tokens = []
    out_last = 0
    cache_word_list = []
    
    stop_sequences = request.stop if request.stop else []
    stop_sequences.append("<call>") 

    for i in range(max_tokens):
        for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
        token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        
        if token == 0:
             yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
             del out; gc.collect(); return

        out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
        model_tokens.append(token)
        out_tokens.append(token)
        
        for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
        occurrence[token] = 1 + (occurrence.get(token, 0))
        
        tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
        if "\ufffd" in tmp: continue
        cache_word_list.append(tmp)
        out_last = i + 1
        
        current_buffer = "".join(cache_word_list)
        
        if "<call>" in current_buffer:
            pre_call = current_buffer.split("<call>")[0]
            yield {"content": pre_call, "finish_reason": "tool_start", "state": model_state}
            del out; gc.collect(); return

        for s in stop_sequences:
            if s in current_buffer and s != "<call>":
                final_content = current_buffer.split(s)[0]
                yield {"content": final_content, "finish_reason": "stop", "state": model_state}
                del out; gc.collect(); return

        if len(cache_word_list) > 2:
            yield {"content": cache_word_list.pop(0), "finish_reason": None}
            
    yield {"content": "".join(cache_word_list), "finish_reason": "length"}

async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
    current_messages = request.messages
    
    for step in range(4):
        clean_msg = cleanMessages(current_messages, enableReasoning)
        prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}"
        
        tool_call_mode = False
        
        async with GPU_LOCK:
            try:
                out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
                
                if step == 0:
                    yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
                
                for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096):
                    content = chunk.get("content", "")
                    finish = chunk.get("finish_reason", None)
                    
                    if finish == "tool_start":
                        tool_call_mode = True
                        if content:
                            yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
                        break
                    
                    if content:
                        yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
                    
                    if finish:
                        yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=''), finish_reason=finish)]).model_dump_json()}\n\n"
                        return

            finally:
                pass
        
        if tool_call_mode:
            full_tool_call = ""
            
            async with GPU_LOCK:
                try:
                    tool_out, tool_tokens, tool_state = await runPrefill(request, "", [0], model_state)
                    current_gen = ""
                    
                    for i in range(200):
                        tool_token = MODEL_STORAGE[request.model].pipeline.sample_logits(tool_out, temperature=0.1, top_p=0.1)
                        tool_out, tool_state = MODEL_STORAGE[request.model].model.forward([tool_token], tool_state)
                        
                        char = MODEL_STORAGE[request.model].pipeline.decode([tool_token])
                        current_gen += char
                        
                        if "</call>" in current_gen:
                            full_tool_call = current_gen.split("</call>")[0]
                            break
                finally:
                    pass
            
            if full_tool_call:
                result = ToolEngine.execute(full_tool_call)
                current_messages.append(ChatMessage(role="assistant", content=f"<call>{full_tool_call}</call>"))
                current_messages.append(ChatMessage(role="tool", content=result, name="system"))
            else:
                break
        else:
            break
            
    yield "data: [DONE]\n\n"

@app.post("/v1/chat/completions")
@app.post("/v1/chat/")
@app.post("/v1/completions")
@app.post("/v1/responses")
@app.post("/responses")
@app.post("/api/generate")
@app.post("/api/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
    completionId = str(next(CompletionIdGenerator))
    raw_model = request.model
    model_key = request.model.split(":")[0].replace(":online", "")
    is_reasoning = ":thinking" in request.model
    target_model = model_key
    if "rwkv-latest" in model_key:
        if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME
        elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME
    
    if target_model not in MODEL_STORAGE:
        raise HTTPException(404, f"Model {target_model} not loaded.")
    request.model = target_model

    default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER
    req_data = request.model_dump()
    for k, v in default_sampler.model_dump().items():
        if req_data.get(k) is None: req_data[k] = v
    realRequest = ChatCompletionRequest(**req_data)

    # FIX: Handle missing messages (legacy completion API support)
    if realRequest.messages is None:
        if realRequest.prompt:
            realRequest.messages = [ChatMessage(role="user", content=realRequest.prompt)]
        else:
            # Fallback to empty list to prevent crashes in prune_context/cleanMessages
            realRequest.messages = []

    enable_tools = ":online" in raw_model or realRequest.tools is not None
    
    if enable_tools:
        sys_msg = ChatMessage(role="System", content=ToolEngine.TOOL_SYSTEM_PROMPT)
        if realRequest.messages:
            if realRequest.messages[0].role == "System":
                 realRequest.messages[0].content += f"\n\n{ToolEngine.TOOL_SYSTEM_PROMPT}"
            else:
                realRequest.messages.insert(0, sys_msg)
        else:
            realRequest.messages.append(sys_msg)

    realRequest.messages = prune_context(realRequest.messages, target_model, realRequest.max_tokens or 1024)

    return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")

@app.get("/api/v1/models")
@app.get("/v1/models")
@app.get("/models")
async def list_models():
    models_list = []
    ts = int(time.time())
    for model_id in MODEL_STORAGE.keys():
        models_list.append({"id": model_id, "object": "model", "created": ts, "owned_by": "rwkv-server"})
        models_list.append({"id": f"{model_id}:online", "object": "model", "created": ts, "owned_by": "rwkv-server"})
    if DEFALUT_MODEL_NAME:
        models_list.append({"id": "rwkv-latest", "object": "model", "created": ts, "owned_by": "rwkv-system"})
        models_list.append({"id": "rwkv-latest:online", "object": "model", "created": ts, "owned_by": "rwkv-system"})
    if DEFAULT_REASONING_MODEL_NAME:
        models_list.append({"id": "rwkv-latest:thinking", "object": "model", "created": ts, "owned_by": "rwkv-system"})
        models_list.append({"id": "rwkv-latest:thinking:online", "object": "model", "created": ts, "owned_by": "rwkv-system"})
    return {"object": "list", "data": models_list}

app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT)