File size: 14,257 Bytes
bbff189 ece9c25 bbff189 f8f0c2e bbff189 1cde957 bbff189 1cde957 bbff189 bf3068d bbff189 f8f0c2e bbff189 f8f0c2e bbff189 bf3068d bbff189 f8f0c2e bbff189 bf3068d bbff189 1cde957 bf3068d 1cde957 bf3068d 1cde957 f8f0c2e bf3068d f8f0c2e 1cde957 f8f0c2e 1cde957 f8f0c2e 1cde957 f8f0c2e bf3068d 1cde957 bf3068d 1cde957 bf3068d 1cde957 bbff189 f8f0c2e bbff189 bf3068d f8f0c2e bbff189 1cde957 bbff189 bf3068d 1cde957 bf3068d 1cde957 bbff189 1cde957 bf3068d 1cde957 bbff189 1cde957 bbff189 f8f0c2e bbff189 bf3068d bbff189 1cde957 bbff189 f8f0c2e bbff189 1cde957 bbff189 1cde957 bbff189 bf3068d bbff189 bf3068d bbff189 1cde957 bbff189 bf3068d bbff189 bf3068d 1cde957 bbff189 bf3068d bbff189 bf3068d 1cde957 bf3068d bbff189 1cde957 bf3068d f8f0c2e bbff189 bf3068d bbff189 bf3068d bbff189 bf3068d bbff189 08e53db bbff189 1cde957 bf3068d bbff189 f8f0c2e bf3068d f8f0c2e bf3068d 1cde957 f8f0c2e bf3068d 1cde957 bf3068d 1cde957 f8f0c2e 1cde957 f8f0c2e 1cde957 bf3068d 1cde957 bbff189 08e53db bbff189 f8f0c2e bbff189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
#os.system("pip install faker duckduckgo_search")
import copy
import types
import gc
import sys
import re
import time
import collections
import asyncio
import random
from typing import List, Optional, Union, Any, Dict
# --- CONFIGURACI脫N DE ENTORNO ---
if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
from modelscope import patch_hub
patch_hub()
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256"
os.environ["RWKV_V7_ON"] = "1"
os.environ["RWKV_JIT_ON"] = "1"
# --- IMPORTS ---
from config import CONFIG, ModelConfig
from utils import (
cleanMessages,
parse_think_response,
remove_nested_think_tags_stack,
format_bytes,
log,
)
from huggingface_hub import hf_hub_download
from loguru import logger
from snowflake import SnowflakeGenerator
import numpy as np
import torch
import requests
# Dependencias Opcionales
try:
from duckduckgo_search import DDGS
HAS_DDG = True
except ImportError:
HAS_DDG = False
try:
from faker import Faker
fake = Faker()
HAS_FAKER = True
except ImportError:
HAS_FAKER = False
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.gzip import GZipMiddleware
from pydantic import BaseModel, Field, model_validator
# --- SETUP INICIAL ---
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
CONFIG.STRATEGY = "cpu fp16"
if "cuda" in CONFIG.STRATEGY.lower():
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["RWKV_CUDA_ON"] = "1" if CONFIG.RWKV_CUDA_ON else "0"
else:
os.environ["RWKV_CUDA_ON"] = "0"
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from api_types import (
ChatMessage, ChatCompletion, ChatCompletionChunk, Usage,
ChatCompletionChoice, ChatCompletionMessage
)
# --- ALMACENAMIENTO DE MODELOS ---
class ModelStorage:
MODEL_CONFIG: Optional[ModelConfig] = None
model: Optional[RWKV] = None
pipeline: Optional[PIPELINE] = None
MODEL_STORAGE: Dict[str, ModelStorage] = {}
DEFALUT_MODEL_NAME = None
DEFAULT_REASONING_MODEL_NAME = None
for model_config in CONFIG.MODELS:
if model_config.MODEL_FILE_PATH is None:
model_config.MODEL_FILE_PATH = hf_hub_download(
repo_id=model_config.DOWNLOAD_MODEL_REPO_ID,
filename=model_config.DOWNLOAD_MODEL_FILE_NAME,
local_dir=model_config.DOWNLOAD_MODEL_DIR,
)
if model_config.DEFAULT_CHAT: DEFALUT_MODEL_NAME = model_config.SERVICE_NAME
if model_config.DEFAULT_REASONING: DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME
MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage()
MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config
MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV(
model=model_config.MODEL_FILE_PATH.replace(".pth", ""),
strategy=CONFIG.STRATEGY,
)
MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE(
MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB
)
if "cuda" in CONFIG.STRATEGY:
torch.cuda.empty_cache()
gc.collect()
# --- CLASES DE DATOS ---
class ChatCompletionRequest(BaseModel):
model: str = Field(default="rwkv-latest")
messages: Optional[List[ChatMessage]] = Field(default=None)
prompt: Optional[str] = Field(default=None)
max_tokens: Optional[int] = Field(default=None)
temperature: Optional[float] = Field(default=None)
top_p: Optional[float] = Field(default=None)
presence_penalty: Optional[float] = Field(default=None)
count_penalty: Optional[float] = Field(default=None)
penalty_decay: Optional[float] = Field(default=None)
stream: Optional[bool] = Field(default=False)
stop: Optional[list[str]] = Field(["\n\n"])
stop_tokens: Optional[list[int]] = Field([0])
@model_validator(mode="before")
@classmethod
def validate_mutual_exclusivity(cls, data: Any) -> Any:
if not isinstance(data, dict): return data
if "messages" in data and "prompt" in data and data["messages"] and data["prompt"]:
raise ValueError("messages and prompt cannot coexist.")
return data
# --- PROTOCOLO DE VERDAD Y FLUIDEZ ---
class TruthAndFlowProtocol:
"""
Gestiona la coherencia factual y evita la repetici贸n rob贸tica.
"""
SYSTEM_INSTRUCTION = """
PROTOCOL: FACTUAL_AND_CONCISE
1. TRUTH: Say ONLY what is verified in the context or internal knowledge.
2. NO REPETITION: Do not repeat facts. Do not repeat sentence structures.
3. CONCISENESS: Get to the point directly.
4. LABELS: Use [VERIFICADO] for confirmed data, [INCIERTO] for contradictions.
5. NO FILLER: Avoid "As an AI", "I think", "Basically".
""".strip()
@staticmethod
def optimize_params(request: ChatCompletionRequest):
"""
Calibraci贸n fina para evitar bucles sin perder la factualidad.
"""
# Temperatura baja (0.15) pero no cero.
# Si es 0.0, entra en bucle seguro. 0.15 da el m铆nimo margen para variar palabras.
request.temperature = 0.15
# Top P estricto (0.1)
# Solo permite palabras l贸gicas.
request.top_p = 0.1
# --- AQU脥 EST脕 LA MAGIA ANTI-REPETICI脫N ---
# Frequency Penalty (1.2):
# Castigo ALTO si usas la MISMA palabra exacta muchas veces.
# Evita: "y y y y" o "es es es".
request.count_penalty = 1.2
# Presence Penalty (0.7):
# Castigo MEDIO si repites el mismo concepto.
# Evita decir lo mismo con otras palabras inmediatamente.
request.presence_penalty = 0.7
# Penalty Decay (0.996):
# "Perdona" el uso de palabras despu茅s de un rato.
# Necesario para que pueda volver a usar "el", "de", "que" sin bloquearse.
request.penalty_decay = 0.996
@staticmethod
def search_verify(query: str) -> str:
"""B煤squeda y corroboraci贸n web."""
if not HAS_DDG: return ""
try:
# B煤squeda normal
ddgs = DDGS()
results = ddgs.text(query, max_results=3)
# B煤squeda de fact-check si es necesario
is_suspicious = any(w in query.lower() for w in ["verdad", "fake", "bulo", "cierto"])
if is_suspicious:
check_res = ddgs.text(f"{query} fact check", max_results=2)
if check_res: results.extend(check_res)
if not results: return ""
context = "VERIFIED CONTEXT (Use strict labels [VERIFICADO]/[INCIERTO]):\n"
for r in results:
context += f"- {r['body']} (Source: {r['title']})\n"
return context
except Exception:
return ""
# --- APP SETUP ---
app = FastAPI(title="RWKV High-Fidelity Server")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)
@app.middleware("http")
async def privacy_middleware(request: Request, call_next):
if HAS_FAKER:
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
return await call_next(request)
# --- CACH脡 ---
search_cache = collections.OrderedDict()
def get_context(query: str) -> str:
if query in search_cache: return search_cache[query]
ctx = TruthAndFlowProtocol.search_verify(query)
if len(search_cache) > 50: search_cache.popitem(last=False)
search_cache[query] = ctx
return ctx
def needs_search(msg: str, model: str) -> bool:
if ":online" in model: return True
return any(k in msg.lower() for k in ["quien", "cuando", "donde", "precio", "es verdad", "dato"])
# --- CORE RWKV LOOP ---
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
ctx = ctx.replace("\r\n", "\n")
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
model_tokens.extend([int(x) for x in tokens])
while len(tokens) > 0:
out, model_state = MODEL_STORAGE[request.model].model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
tokens = tokens[CONFIG.CHUNK_LEN :]
await asyncio.sleep(0)
return out, model_tokens, model_state
def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048):
# Asignaci贸n correcta de penalizaciones a PIPELINE_ARGS
# Nota: alpha_frequency suele mapearse a count_penalty en la API de OpenAI
args = PIPELINE_ARGS(
temperature=request.temperature,
top_p=request.top_p,
alpha_frequency=request.count_penalty, # Penalizaci贸n por repetici贸n exacta
alpha_presence=request.presence_penalty, # Penalizaci贸n por presencia de concepto
token_ban=[],
token_stop=[0]
)
occurrence = {}
out_tokens = []
out_last = 0
cache_word_list = []
for i in range(max_tokens):
# Aplicaci贸n manual de penalizaciones al vector de logits 'out'
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token == 0:
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
del out; gc.collect(); return
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
model_tokens.append(token)
out_tokens.append(token)
# Decay: La memoria de repetici贸n se desvanece lentamente
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
occurrence[token] = 1 + (occurrence.get(token, 0))
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
if "\ufffd" in tmp: continue
cache_word_list.append(tmp)
out_last = i + 1
if len(cache_word_list) > 1:
yield {"content": cache_word_list.pop(0), "finish_reason": None}
yield {"content": "".join(cache_word_list), "finish_reason": "length"}
# --- HANDLER ---
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
clean_msg = cleanMessages(request.messages, enableReasoning)
prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}"
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096):
content = chunk["content"]
if content:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
if chunk.get("finish_reason"): break
await asyncio.sleep(0)
yield "data: [DONE]\n\n"
@app.post("/v1/chat/completions")
@app.post("/api/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
completionId = str(next(CompletionIdGenerator))
raw_model = request.model
model_key = request.model.split(":")[0].replace(":online", "")
is_reasoning = ":thinking" in request.model
target_model = model_key
if "rwkv-latest" in model_key:
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME
elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME
if target_model not in MODEL_STORAGE: raise HTTPException(404, "Model not found")
request.model = target_model
default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER
req_data = request.model_dump()
for k, v in default_sampler.model_dump().items():
if req_data.get(k) is None: req_data[k] = v
realRequest = ChatCompletionRequest(**req_data)
# --- L脫GICA DE OPTIMIZACI脫N ---
# 1. System Prompt Anti-Repetici贸n
sys_msg = ChatMessage(role="System", content=TruthAndFlowProtocol.SYSTEM_INSTRUCTION)
if realRequest.messages:
if realRequest.messages[0].role == "System":
realRequest.messages[0].content = f"{TruthAndFlowProtocol.SYSTEM_INSTRUCTION}\n\n{realRequest.messages[0].content}"
else:
realRequest.messages.insert(0, sys_msg)
# 2. Inyecci贸n de Contexto (si aplica)
last_msg = realRequest.messages[-1]
if last_msg.role == "user" and needs_search(last_msg.content, raw_model):
ctx = get_context(last_msg.content)
if ctx: realRequest.messages.insert(-1, ChatMessage(role="System", content=ctx))
# 3. Ajuste Fino de Par谩metros (El n煤cleo anti-repetici贸n)
TruthAndFlowProtocol.optimize_params(realRequest)
logger.info(f"[REQ] {completionId} | Params: T={realRequest.temperature} Freq={realRequest.count_penalty} Pres={realRequest.presence_penalty}")
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
@app.get("/api/v1/models")
@app.get("/v1/models")
async def list_models():
return {"object": "list", "data": [{"id": "rwkv-latest", "object": "model"}]}
app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT) |