Bbbv / app.py
Ksjsjjdj's picture
Update app.py
68b914c verified
import os
import re
import gc
import sys
import time
import json
import queue
import random
import asyncio
import threading
import requests
import collections
import torch
import numpy as np
from typing import List, Optional, Dict, Any, Literal, Union
from pydantic import BaseModel, Field, model_validator
from pydantic_settings import BaseSettings
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.gzip import GZipMiddleware
from huggingface_hub import hf_hub_download
from snowflake import SnowflakeGenerator
if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
from modelscope import patch_hub
patch_hub()
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
os.environ["RWKV_V7_ON"] = "1"
os.environ["RWKV_JIT_ON"] = "1"
os.environ["RWKV_CUDA_ON"] = "1"
GPU_LOCK = asyncio.Lock()
class ChatMessage(BaseModel):
role: str = Field()
content: str = Field()
name: Optional[str] = Field(None)
tool_call_id: Optional[str] = Field(None)
class Logprob(BaseModel):
token: str
logprob: float
top_logprobs: Optional[List[Dict[str, Any]]] = None
class LogprobsContent(BaseModel):
content: Optional[List[Logprob]] = None
refusal: Optional[List[Logprob]] = None
class ChatCompletionMessage(BaseModel):
role: Optional[str] = Field(None)
content: Optional[str] = Field(None)
reasoning_content: Optional[str] = Field(None)
tool_calls: Optional[List[Dict[str, Any]]] = Field(None)
class PromptTokensDetails(BaseModel):
cached_tokens: int
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: Optional[PromptTokensDetails] = None
class ChatCompletionChoice(BaseModel):
index: int
message: Optional[ChatCompletionMessage] = None
delta: Optional[ChatCompletionMessage] = None
logprobs: Optional[LogprobsContent] = None
finish_reason: Optional[str] = Field(...)
class ChatCompletionChunk(BaseModel):
id: str = Field(...)
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(...)
model: str
choices: List[ChatCompletionChoice]
usage: Optional[Usage] = None
class ToolFunction(BaseModel):
name: str
description: str
parameters: Dict[str, Any]
class Tool(BaseModel):
type: Literal["function"] = "function"
function: ToolFunction
def remove_nested_think_tags_stack(text):
stack = []
result = ""
i = 0
while i < len(text):
if text[i : i + 7] == "<think>":
stack.append("<think>")
i += 7
elif text[i : i + 8] == "</think>":
if stack and stack[-1] == "<think>":
stack.pop()
i += 8
else:
result += text[i : i + 8]
i += 8
elif not stack:
result += text[i]
i += 1
else:
i += 1
return result
def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = False):
promptStrList = []
# Safety check in case messages is None
if not messages:
return ""
for message in messages:
content = message.content.strip()
content = re.sub(r"\n+", "\n", content)
role_str = message.role.strip().lower().capitalize()
if role_str == 'Assistant' and removeThinkingContent:
content = remove_nested_think_tags_stack(content)
if message.role == "tool":
promptStrList.append(f"Tool Output ({message.name}): {content}")
elif message.role == "system":
promptStrList.append(f"System: {content}")
elif message.role == "user":
promptStrList.append(f"User: {content}")
elif message.role == "assistant":
promptStrList.append(f"Assistant: {content}")
else:
promptStrList.append(f"{role_str}: {content}")
return "\n\n".join(promptStrList)
class SamplerConfig(BaseModel):
max_tokens: int = 4096
temperature: float = 1.0
top_p: float = 0.3
presence_penalty: float = 0.5
count_penalty: float = 0.5
penalty_decay: float = 0.996
stop: List[str] = ["\n\n"]
stop_tokens: List[int] = [0]
class ModelConfig(BaseModel):
SERVICE_NAME: str
DOWNLOAD_MODEL_FILE_NAME: str
DOWNLOAD_MODEL_REPO_ID: str
DOWNLOAD_MODEL_DIR: str = "models"
MODEL_FILE_PATH: Optional[str] = None
DEFAULT_CHAT: bool = False
DEFAULT_REASONING: bool = False
REASONING: bool = False
VOCAB: str = "rwkv_vocab_v20230424"
CTX_LEN: int = 4096
DEFAULT_SAMPLER: SamplerConfig = Field(default_factory=SamplerConfig)
class Config(BaseSettings):
HOST: str = "0.0.0.0"
PORT: int = 7860
STRATEGY: str = "cuda fp16"
RWKV_CUDA_ON: bool = True
CHUNK_LEN: int = 256
MODELS: List[ModelConfig] = [
ModelConfig(
SERVICE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
CTX_LEN=8192
),
ModelConfig(
SERVICE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
CTX_LEN=8192
),
ModelConfig(
SERVICE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
CTX_LEN=4096
),
ModelConfig(
SERVICE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096",
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096.pth",
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
REASONING=True,
DEFAULT_CHAT=True,
DEFAULT_REASONING=True,
CTX_LEN=4096
),
]
CONFIG = Config()
try:
from duckduckgo_search import DDGS
HAS_DDG = True
except ImportError:
HAS_DDG = False
try:
from faker import Faker
fake = Faker()
HAS_FAKER = True
except ImportError:
HAS_FAKER = False
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
CONFIG.STRATEGY = "cpu fp16"
CONFIG.RWKV_CUDA_ON = False
if CONFIG.RWKV_CUDA_ON and "cuda" in CONFIG.STRATEGY.lower():
from pynvml import *
nvmlInit()
os.environ["RWKV_CUDA_ON"] = "1"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
else:
os.environ["RWKV_CUDA_ON"] = "0"
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
class ModelStorage:
MODEL_CONFIG: Optional[ModelConfig] = None
model: Optional[RWKV] = None
pipeline: Optional[PIPELINE] = None
MODEL_STORAGE: Dict[str, ModelStorage] = {}
DEFALUT_MODEL_NAME = None
DEFAULT_REASONING_MODEL_NAME = None
for model_config in CONFIG.MODELS:
if model_config.MODEL_FILE_PATH is None:
model_config.MODEL_FILE_PATH = hf_hub_download(
repo_id=model_config.DOWNLOAD_MODEL_REPO_ID,
filename=model_config.DOWNLOAD_MODEL_FILE_NAME,
local_dir=model_config.DOWNLOAD_MODEL_DIR,
)
if model_config.DEFAULT_CHAT:
DEFALUT_MODEL_NAME = model_config.SERVICE_NAME
if model_config.DEFAULT_REASONING:
DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME
MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage()
MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config
MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV(
model=model_config.MODEL_FILE_PATH.replace(".pth", ""),
strategy=CONFIG.STRATEGY,
)
MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE(
MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB
)
if "cuda" in CONFIG.STRATEGY:
torch.cuda.empty_cache()
gc.collect()
class ChatCompletionRequest(BaseModel):
model: str = Field(default="rwkv-latest")
messages: Optional[List[ChatMessage]] = Field(default=None)
prompt: Optional[str] = Field(default=None)
max_tokens: Optional[int] = Field(default=None)
temperature: Optional[float] = Field(default=None)
top_p: Optional[float] = Field(default=None)
presence_penalty: Optional[float] = Field(default=None)
count_penalty: Optional[float] = Field(default=None)
penalty_decay: Optional[float] = Field(default=None)
stream: Optional[bool] = Field(default=False)
stop: Optional[List[str]] = Field(["\n\n"])
stop_tokens: Optional[List[int]] = Field([0])
tools: Optional[List[Tool]] = Field(default=None)
tool_choice: Optional[Union[str, Dict]] = Field(default="auto")
@model_validator(mode="before")
@classmethod
def validate_mutual_exclusivity(cls, data: Any) -> Any:
if not isinstance(data, dict): return data
if "messages" in data and "prompt" in data and data["messages"] and data["prompt"]:
raise ValueError("messages and prompt cannot coexist.")
return data
class ToolEngine:
TOOL_SYSTEM_PROMPT = """
CAPABILITY: You have access to real-time tools.
INSTRUCTION: To use a tool, output exactly: <call>tool_name("argument")</call>
Do not describe the tool, just call it. After the System provides the result, synthesize the answer.
AVAILABLE TOOLS:
1. google_search(query): Searches Google and DuckDuckGo for real-time information.
2. visit_page(url): Accesses a specific link, reads the text, and finds sub-links.
""".strip()
@staticmethod
def google_search_request(query: str) -> str:
try:
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"}
resp = requests.get("https://www.google.com/search", params={"q": query, "gl": "us", "hl": "en"}, headers=headers, timeout=6)
if resp.status_code != 200: raise Exception("Google blocked request")
clean_text = re.sub(r'<script.*?>.*?</script>', '', resp.text, flags=re.DOTALL)
clean_text = re.sub(r'<style.*?>.*?</style>', '', clean_text, flags=re.DOTALL)
headings = re.findall(r'<h3.*?>(.*?)</h3>', clean_text)
links = re.findall(r'<a href="/url\?q=(.*?)&', clean_text)
limit = min(len(headings), len(links), 5)
output = "Google Results:\n"
for i in range(limit):
output += f"{i+1}. {re.sub(r'<.*?>', '', headings[i])} - Link: {links[i]}\n"
if not headings:
return ToolEngine.duckduckgo_fallback(query)
return output
except:
return ToolEngine.duckduckgo_fallback(query)
@staticmethod
def duckduckgo_fallback(query: str) -> str:
try:
if HAS_DDG:
res = DDGS().text(query, max_results=5)
return "\n".join([f"- {r['title']}: {r['body']} ({r['href']})" for r in res])
resp = requests.get("https://html.duckduckgo.com/html/", params={"q": query}, headers={"User-Agent": "Mozilla/5.0"}, timeout=5)
titles = re.findall(r'<a class="result__a"[^>]*>(.*?)</a>', resp.text)
snippets = re.findall(r'<a class="result__snippet"[^>]*>(.*?)</a>', resp.text)
limit = min(len(titles), len(snippets), 4)
out = "DuckDuckGo HTML Results:\n"
for i in range(limit):
t = re.sub(r'<.*?>', '', titles[i]).strip()
s = re.sub(r'<.*?>', '', snippets[i]).strip()
out += f"{i+1}. {t}: {s}\n"
return out
except Exception as e:
return f"Search failed: {str(e)}"
@staticmethod
def visit_page(url: str) -> str:
try:
headers = {"User-Agent": "Mozilla/5.0 (compatible; RWKV-Bot/1.0)"}
resp = requests.get(url, headers=headers, timeout=8)
resp.encoding = resp.apparent_encoding
text = re.sub(r'<head.*?>.*?</head>', '', resp.text, flags=re.DOTALL)
text = re.sub(r'<script.*?>.*?</script>', '', text, flags=re.DOTALL)
text = re.sub(r'<style.*?>.*?</style>', '', text, flags=re.DOTALL)
text = re.sub(r'<!--.*?-->', '', text, flags=re.DOTALL)
text = re.sub(r'<[^>]+>', ' ', text)
text = re.sub(r'\s+', ' ', text).strip()
links = re.findall(r'href=["\'](http[s]?://[^"\']+)["\']', resp.text)
unique_links = list(set(links))[:5]
content_preview = text[:3000] + ("..." if len(text) > 3000 else "")
return f"PAGE CONTENT ({url}):\n{content_preview}\n\nFOUND SUB-LINKS:\n" + "\n".join(unique_links)
except Exception as e:
return f"Error visiting page: {str(e)}"
@staticmethod
def execute(call_str: str) -> str:
try:
match = re.match(r'(\w+)\(["\'](.*?)["\']\)', call_str)
if not match: return "Invalid tool call syntax."
func, arg = match.groups()
if func == "google_search":
return ToolEngine.google_search_request(arg)
elif func == "visit_page":
return ToolEngine.visit_page(arg)
else:
return f"Unknown tool: {func}"
except Exception as e:
return f"Tool execution error: {e}"
app = FastAPI(title="RWKV Ultimate Agent Server")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)
@app.middleware("http")
async def privacy_middleware(request: Request, call_next):
if HAS_FAKER:
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
return await call_next(request)
def prune_context(messages: List[ChatMessage], model_name: str, max_gen_tokens: int):
storage = MODEL_STORAGE[model_name]
limit = storage.MODEL_CONFIG.CTX_LEN
pipeline = storage.pipeline
current_text = cleanMessages(messages)
tokens = pipeline.encode(current_text)
if len(tokens) + max_gen_tokens < limit:
return messages
system_msgs = [m for m in messages if m.role == "System"]
other_msgs = [m for m in messages if m.role != "System"]
while len(other_msgs) > 1:
candidate_text = cleanMessages(system_msgs + other_msgs)
if len(pipeline.encode(candidate_text)) + max_gen_tokens < limit:
break
other_msgs.pop(0)
return system_msgs + other_msgs
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
ctx = ctx.replace("\r\n", "\n")
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
model_tokens.extend([int(x) for x in tokens])
while len(tokens) > 0:
out, model_state = MODEL_STORAGE[request.model].model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
tokens = tokens[CONFIG.CHUNK_LEN :]
await asyncio.sleep(0)
return out, model_tokens, model_state
def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048):
args = PIPELINE_ARGS(
temperature=request.temperature,
top_p=request.top_p,
alpha_frequency=request.count_penalty,
alpha_presence=request.presence_penalty,
token_ban=[], token_stop=[0]
)
occurrence = {}
out_tokens = []
out_last = 0
cache_word_list = []
stop_sequences = request.stop if request.stop else []
stop_sequences.append("<call>")
for i in range(max_tokens):
for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token == 0:
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
del out; gc.collect(); return
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
model_tokens.append(token)
out_tokens.append(token)
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
occurrence[token] = 1 + (occurrence.get(token, 0))
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
if "\ufffd" in tmp: continue
cache_word_list.append(tmp)
out_last = i + 1
current_buffer = "".join(cache_word_list)
if "<call>" in current_buffer:
pre_call = current_buffer.split("<call>")[0]
yield {"content": pre_call, "finish_reason": "tool_start", "state": model_state}
del out; gc.collect(); return
for s in stop_sequences:
if s in current_buffer and s != "<call>":
final_content = current_buffer.split(s)[0]
yield {"content": final_content, "finish_reason": "stop", "state": model_state}
del out; gc.collect(); return
if len(cache_word_list) > 2:
yield {"content": cache_word_list.pop(0), "finish_reason": None}
yield {"content": "".join(cache_word_list), "finish_reason": "length"}
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
current_messages = request.messages
for step in range(4):
clean_msg = cleanMessages(current_messages, enableReasoning)
prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}"
tool_call_mode = False
async with GPU_LOCK:
try:
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
if step == 0:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096):
content = chunk.get("content", "")
finish = chunk.get("finish_reason", None)
if finish == "tool_start":
tool_call_mode = True
if content:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
break
if content:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
if finish:
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=''), finish_reason=finish)]).model_dump_json()}\n\n"
return
finally:
pass
if tool_call_mode:
full_tool_call = ""
async with GPU_LOCK:
try:
tool_out, tool_tokens, tool_state = await runPrefill(request, "", [0], model_state)
current_gen = ""
for i in range(200):
tool_token = MODEL_STORAGE[request.model].pipeline.sample_logits(tool_out, temperature=0.1, top_p=0.1)
tool_out, tool_state = MODEL_STORAGE[request.model].model.forward([tool_token], tool_state)
char = MODEL_STORAGE[request.model].pipeline.decode([tool_token])
current_gen += char
if "</call>" in current_gen:
full_tool_call = current_gen.split("</call>")[0]
break
finally:
pass
if full_tool_call:
result = ToolEngine.execute(full_tool_call)
current_messages.append(ChatMessage(role="assistant", content=f"<call>{full_tool_call}</call>"))
current_messages.append(ChatMessage(role="tool", content=result, name="system"))
else:
break
else:
break
yield "data: [DONE]\n\n"
@app.post("/v1/chat/completions")
@app.post("/v1/chat/")
@app.post("/v1/completions")
@app.post("/v1/responses")
@app.post("/responses")
@app.post("/api/generate")
@app.post("/api/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
completionId = str(next(CompletionIdGenerator))
raw_model = request.model
model_key = request.model.split(":")[0].replace(":online", "")
is_reasoning = ":thinking" in request.model
target_model = model_key
if "rwkv-latest" in model_key:
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME
elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME
if target_model not in MODEL_STORAGE:
raise HTTPException(404, f"Model {target_model} not loaded.")
request.model = target_model
default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER
req_data = request.model_dump()
for k, v in default_sampler.model_dump().items():
if req_data.get(k) is None: req_data[k] = v
realRequest = ChatCompletionRequest(**req_data)
# FIX: Handle missing messages (legacy completion API support)
if realRequest.messages is None:
if realRequest.prompt:
realRequest.messages = [ChatMessage(role="user", content=realRequest.prompt)]
else:
# Fallback to empty list to prevent crashes in prune_context/cleanMessages
realRequest.messages = []
enable_tools = ":online" in raw_model or realRequest.tools is not None
if enable_tools:
sys_msg = ChatMessage(role="System", content=ToolEngine.TOOL_SYSTEM_PROMPT)
if realRequest.messages:
if realRequest.messages[0].role == "System":
realRequest.messages[0].content += f"\n\n{ToolEngine.TOOL_SYSTEM_PROMPT}"
else:
realRequest.messages.insert(0, sys_msg)
else:
realRequest.messages.append(sys_msg)
realRequest.messages = prune_context(realRequest.messages, target_model, realRequest.max_tokens or 1024)
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
@app.get("/api/v1/models")
@app.get("/v1/models")
@app.get("/models")
async def list_models():
models_list = []
ts = int(time.time())
for model_id in MODEL_STORAGE.keys():
models_list.append({"id": model_id, "object": "model", "created": ts, "owned_by": "rwkv-server"})
models_list.append({"id": f"{model_id}:online", "object": "model", "created": ts, "owned_by": "rwkv-server"})
if DEFALUT_MODEL_NAME:
models_list.append({"id": "rwkv-latest", "object": "model", "created": ts, "owned_by": "rwkv-system"})
models_list.append({"id": "rwkv-latest:online", "object": "model", "created": ts, "owned_by": "rwkv-system"})
if DEFAULT_REASONING_MODEL_NAME:
models_list.append({"id": "rwkv-latest:thinking", "object": "model", "created": ts, "owned_by": "rwkv-system"})
models_list.append({"id": "rwkv-latest:thinking:online", "object": "model", "created": ts, "owned_by": "rwkv-system"})
return {"object": "list", "data": models_list}
app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT)