|
|
import os |
|
|
#os.system("pip install faker duckduckgo_search") |
|
|
import copy |
|
|
import types |
|
|
import gc |
|
|
import sys |
|
|
import re |
|
|
import time |
|
|
import collections |
|
|
import asyncio |
|
|
import random |
|
|
from typing import List, Optional, Union, Any, Dict |
|
|
|
|
|
# --- CONFIGURACI脫N DE ENTORNO --- |
|
|
if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio": |
|
|
from modelscope import patch_hub |
|
|
patch_hub() |
|
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256" |
|
|
os.environ["RWKV_V7_ON"] = "1" |
|
|
os.environ["RWKV_JIT_ON"] = "1" |
|
|
|
|
|
# --- IMPORTS --- |
|
|
from config import CONFIG, ModelConfig |
|
|
from utils import ( |
|
|
cleanMessages, |
|
|
parse_think_response, |
|
|
remove_nested_think_tags_stack, |
|
|
format_bytes, |
|
|
log, |
|
|
) |
|
|
from huggingface_hub import hf_hub_download |
|
|
from loguru import logger |
|
|
from snowflake import SnowflakeGenerator |
|
|
import numpy as np |
|
|
import torch |
|
|
import requests |
|
|
|
|
|
# Dependencias Opcionales |
|
|
try: |
|
|
from duckduckgo_search import DDGS |
|
|
HAS_DDG = True |
|
|
except ImportError: |
|
|
HAS_DDG = False |
|
|
|
|
|
try: |
|
|
from faker import Faker |
|
|
fake = Faker() |
|
|
HAS_FAKER = True |
|
|
except ImportError: |
|
|
HAS_FAKER = False |
|
|
|
|
|
from fastapi import FastAPI, HTTPException, Request |
|
|
from fastapi.responses import StreamingResponse |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from fastapi.staticfiles import StaticFiles |
|
|
from fastapi.middleware.gzip import GZipMiddleware |
|
|
from pydantic import BaseModel, Field, model_validator |
|
|
|
|
|
# --- SETUP INICIAL --- |
|
|
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595) |
|
|
|
|
|
if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available(): |
|
|
CONFIG.STRATEGY = "cpu fp16" |
|
|
|
|
|
if "cuda" in CONFIG.STRATEGY.lower(): |
|
|
from pynvml import * |
|
|
nvmlInit() |
|
|
gpu_h = nvmlDeviceGetHandleByIndex(0) |
|
|
torch.backends.cudnn.benchmark = True |
|
|
torch.backends.cudnn.allow_tf32 = True |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
os.environ["RWKV_CUDA_ON"] = "1" if CONFIG.RWKV_CUDA_ON else "0" |
|
|
else: |
|
|
os.environ["RWKV_CUDA_ON"] = "0" |
|
|
|
|
|
from rwkv.model import RWKV |
|
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS |
|
|
from api_types import ( |
|
|
ChatMessage, ChatCompletion, ChatCompletionChunk, Usage, |
|
|
ChatCompletionChoice, ChatCompletionMessage |
|
|
) |
|
|
|
|
|
# --- ALMACENAMIENTO DE MODELOS --- |
|
|
class ModelStorage: |
|
|
MODEL_CONFIG: Optional[ModelConfig] = None |
|
|
model: Optional[RWKV] = None |
|
|
pipeline: Optional[PIPELINE] = None |
|
|
|
|
|
MODEL_STORAGE: Dict[str, ModelStorage] = {} |
|
|
DEFALUT_MODEL_NAME = None |
|
|
DEFAULT_REASONING_MODEL_NAME = None |
|
|
|
|
|
for model_config in CONFIG.MODELS: |
|
|
if model_config.MODEL_FILE_PATH is None: |
|
|
model_config.MODEL_FILE_PATH = hf_hub_download( |
|
|
repo_id=model_config.DOWNLOAD_MODEL_REPO_ID, |
|
|
filename=model_config.DOWNLOAD_MODEL_FILE_NAME, |
|
|
local_dir=model_config.DOWNLOAD_MODEL_DIR, |
|
|
) |
|
|
if model_config.DEFAULT_CHAT: DEFALUT_MODEL_NAME = model_config.SERVICE_NAME |
|
|
if model_config.DEFAULT_REASONING: DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME |
|
|
|
|
|
MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage() |
|
|
MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config |
|
|
MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV( |
|
|
model=model_config.MODEL_FILE_PATH.replace(".pth", ""), |
|
|
strategy=CONFIG.STRATEGY, |
|
|
) |
|
|
MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE( |
|
|
MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB |
|
|
) |
|
|
if "cuda" in CONFIG.STRATEGY: |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
# |
|
|
class ChatCompletionRequest(BaseModel): |
|
|
model: str = Field(default="rwkv-latest") |
|
|
messages: Optional[List[ChatMessage]] = Field(default=None) |
|
|
prompt: Optional[str] = Field(default=None) |
|
|
max_tokens: Optional[int] = Field(default=None) |
|
|
temperature: Optional[float] = Field(default=None) |
|
|
top_p: Optional[float] = Field(default=None) |
|
|
presence_penalty: Optional[float] = Field(default=None) |
|
|
count_penalty: Optional[float] = Field(default=None) |
|
|
penalty_decay: Optional[float] = Field(default=None) |
|
|
stream: Optional[bool] = Field(default=False) |
|
|
stop: Optional[list[str]] = Field(["\n\n"]) |
|
|
stop_tokens: Optional[list[int]] = Field([0]) |
|
|
|
|
|
@model_validator(mode="before") |
|
|
@classmethod |
|
|
def validate_mutual_exclusivity(cls, data: Any) -> Any: |
|
|
if not isinstance(data, dict): return data |
|
|
if "messages" in data and "prompt" in data and data["messages"] and data["prompt"]: |
|
|
raise ValueError("messages and prompt cannot coexist.") |
|
|
return data |
|
|
|
|
|
# |
|
|
class TruthAndFlowProtocol: |
|
|
""" |
|
|
Gestiona la coherencia factual y evita la repetici贸n rob贸tica. |
|
|
""" |
|
|
|
|
|
SYSTEM_INSTRUCTION = """ |
|
|
PROTOCOL: FACTUAL_AND_CONCISE |
|
|
1. TRUTH: Say ONLY what is verified in the context or internal knowledge. |
|
|
2. NO REPETITION: Do not repeat facts. Do not repeat sentence structures. |
|
|
3. CONCISENESS: Get to the point directly. |
|
|
4. LABELS: Use [VERIFICADO] for confirmed data, [INCIERTO] for contradictions. |
|
|
5. NO FILLER: Avoid "As an AI", "I think", "Basically". |
|
|
""".strip() |
|
|
|
|
|
@staticmethod |
|
|
def optimize_params(request: ChatCompletionRequest): |
|
|
""" |
|
|
Calibraci贸n fina para evitar bucles sin perder la factualidad. |
|
|
""" |
|
|
# Temperatura baja (0.15) pero no cero. |
|
|
# Si es 0.0, entra en bucle seguro. 0.15 da el m铆nimo margen para variar palabras. |
|
|
request.temperature = 0.15 |
|
|
|
|
|
# Top P estricto (0.1) |
|
|
# Solo permite palabras l贸gicas. |
|
|
request.top_p = 0.1 |
|
|
|
|
|
# |
|
|
|
|
|
# Frequency Penalty (1.2): |
|
|
# Castigo ALTO si usas la MISMA palabra exacta muchas veces. |
|
|
# Evita: "y y y y" o "es es es". |
|
|
request.count_penalty = 1.2 |
|
|
|
|
|
# Presence Penalty (0.7): |
|
|
# Castigo MEDIO si repites el mismo concepto. |
|
|
# Evita decir lo mismo con otras palabras inmediatamente. |
|
|
request.presence_penalty = 0.7 |
|
|
|
|
|
# Penalty Decay (0.996): |
|
|
# "Perdona" el uso de palabras despu茅s de un rato. |
|
|
# Necesario para que pueda volver a usar "el", "de", "que" sin bloquearse. |
|
|
request.penalty_decay = 0.996 |
|
|
|
|
|
@staticmethod |
|
|
def search_verify(query: str) -> str: |
|
|
"""B煤squeda y corroboraci贸n web.""" |
|
|
if not HAS_DDG: return "" |
|
|
try: |
|
|
# B煤squeda normal |
|
|
ddgs = DDGS() |
|
|
results = ddgs.text(query, max_results=3) |
|
|
|
|
|
# B煤squeda de fact-check si es necesario |
|
|
is_suspicious = any(w in query.lower() for w in ["verdad", "fake", "bulo", "cierto"]) |
|
|
if is_suspicious: |
|
|
check_res = ddgs.text(f"{query} fact check", max_results=2) |
|
|
if check_res: results.extend(check_res) |
|
|
|
|
|
if not results: return "" |
|
|
|
|
|
context = "VERIFIED CONTEXT (Use strict labels [VERIFICADO]/[INCIERTO]):\n" |
|
|
for r in results: |
|
|
context += f"- {r['body']} (Source: {r['title']})\n" |
|
|
|
|
|
return context |
|
|
except Exception: |
|
|
return "" |
|
|
|
|
|
# |
|
|
app = FastAPI(title="RWKV High-Fidelity Server") |
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins=["*"], |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
) |
|
|
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5) |
|
|
|
|
|
@app.middleware("http") |
|
|
async def privacy_middleware(request: Request, call_next): |
|
|
if HAS_FAKER: |
|
|
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80) |
|
|
return await call_next(request) |
|
|
|
|
|
# |
|
|
search_cache = collections.OrderedDict() |
|
|
|
|
|
def get_context(query: str) -> str: |
|
|
if query in search_cache: return search_cache[query] |
|
|
ctx = TruthAndFlowProtocol.search_verify(query) |
|
|
if len(search_cache) > 50: search_cache.popitem(last=False) |
|
|
search_cache[query] = ctx |
|
|
return ctx |
|
|
|
|
|
def needs_search(msg: str, model: str) -> bool: |
|
|
if ":online" in model: return True |
|
|
return any(k in msg.lower() for k in ["quien", "cuando", "donde", "precio", "es verdad", "dato"]) |
|
|
|
|
|
# |
|
|
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state): |
|
|
ctx = ctx.replace("\r\n", "\n") |
|
|
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx) |
|
|
model_tokens.extend([int(x) for x in tokens]) |
|
|
while len(tokens) > 0: |
|
|
out, model_state = MODEL_STORAGE[request.model].model.forward(tokens[: CONFIG.CHUNK_LEN], model_state) |
|
|
tokens = tokens[CONFIG.CHUNK_LEN :] |
|
|
await asyncio.sleep(0) |
|
|
return out, model_tokens, model_state |
|
|
|
|
|
def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048): |
|
|
# Asignaci贸n correcta de penalizaciones a PIPELINE_ARGS |
|
|
# Nota: alpha_frequency suele mapearse a count_penalty en la API de OpenAI |
|
|
args = PIPELINE_ARGS( |
|
|
temperature=request.temperature, |
|
|
top_p=request.top_p, |
|
|
alpha_frequency=request.count_penalty, # Penalizaci贸n por repetici贸n exacta |
|
|
alpha_presence=request.presence_penalty, # Penalizaci贸n por presencia de concepto |
|
|
token_ban=[], |
|
|
token_stop=[0] |
|
|
) |
|
|
|
|
|
occurrence = {} |
|
|
out_tokens = [] |
|
|
out_last = 0 |
|
|
cache_word_list = [] |
|
|
|
|
|
for i in range(max_tokens): |
|
|
# Aplicaci贸n manual de penalizaciones al vector de logits 'out' |
|
|
for n in occurrence: |
|
|
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency |
|
|
|
|
|
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) |
|
|
|
|
|
if token == 0: |
|
|
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state} |
|
|
del out; gc.collect(); return |
|
|
|
|
|
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state) |
|
|
model_tokens.append(token) |
|
|
out_tokens.append(token) |
|
|
|
|
|
# Decay: La memoria de repetici贸n se desvanece lentamente |
|
|
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay |
|
|
occurrence[token] = 1 + (occurrence.get(token, 0)) |
|
|
|
|
|
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:]) |
|
|
if "\ufffd" in tmp: continue |
|
|
cache_word_list.append(tmp) |
|
|
out_last = i + 1 |
|
|
|
|
|
if len(cache_word_list) > 1: |
|
|
yield {"content": cache_word_list.pop(0), "finish_reason": None} |
|
|
|
|
|
yield {"content": "".join(cache_word_list), "finish_reason": "length"} |
|
|
|
|
|
# |
|
|
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool): |
|
|
clean_msg = cleanMessages(request.messages, enableReasoning) |
|
|
prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}" |
|
|
|
|
|
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state) |
|
|
|
|
|
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n" |
|
|
|
|
|
for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096): |
|
|
content = chunk["content"] |
|
|
if content: |
|
|
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n" |
|
|
if chunk.get("finish_reason"): break |
|
|
await asyncio.sleep(0) |
|
|
|
|
|
yield "data: [DONE]\n\n" |
|
|
|
|
|
@app.post("/v1/chat/completions") |
|
|
@app.post("/api/v1/chat/completions") |
|
|
async def chat_completions(request: ChatCompletionRequest): |
|
|
completionId = str(next(CompletionIdGenerator)) |
|
|
|
|
|
raw_model = request.model |
|
|
model_key = request.model.split(":")[0].replace(":online", "") |
|
|
is_reasoning = ":thinking" in request.model |
|
|
|
|
|
target_model = model_key |
|
|
if "rwkv-latest" in model_key: |
|
|
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME |
|
|
elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME |
|
|
|
|
|
if target_model not in MODEL_STORAGE: raise HTTPException(404, "Model not found") |
|
|
request.model = target_model |
|
|
|
|
|
default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER |
|
|
req_data = request.model_dump() |
|
|
for k, v in default_sampler.model_dump().items(): |
|
|
if req_data.get(k) is None: req_data[k] = v |
|
|
realRequest = ChatCompletionRequest(**req_data) |
|
|
|
|
|
# |
|
|
|
|
|
# 1. System Prompt Anti-Repetici贸n |
|
|
sys_msg = ChatMessage(role="System", content=TruthAndFlowProtocol.SYSTEM_INSTRUCTION) |
|
|
if realRequest.messages: |
|
|
if realRequest.messages[0].role == "System": |
|
|
realRequest.messages[0].content = f"{TruthAndFlowProtocol.SYSTEM_INSTRUCTION}\n\n{realRequest.messages[0].content}" |
|
|
else: |
|
|
realRequest.messages.insert(0, sys_msg) |
|
|
|
|
|
# 2. Inyecci贸n de Contexto (si aplica) |
|
|
last_msg = realRequest.messages[-1] |
|
|
if last_msg.role == "user" and needs_search(last_msg.content, raw_model): |
|
|
ctx = get_context(last_msg.content) |
|
|
if ctx: realRequest.messages.insert(-1, ChatMessage(role="System", content=ctx)) |
|
|
|
|
|
# 3. Ajuste Fino de Par谩metros (El n煤cleo anti-repetici贸n) |
|
|
TruthAndFlowProtocol.optimize_params(realRequest) |
|
|
|
|
|
logger.info(f"[REQ] {completionId} | Params: T={realRequest.temperature} Freq={realRequest.count_penalty} Pres={realRequest.presence_penalty}") |
|
|
|
|
|
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream") |
|
|
|
|
|
@app.get("/api/v1/models") |
|
|
@app.get("/v1/models") |
|
|
async def list_models(): |
|
|
return {"object": "list", "data": [{"id": "rwkv-latest", "object": "model"}]} |
|
|
|
|
|
app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
import uvicorn |
|
|
uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT) |