MedAI_VLM / src /server_models.py
Jesteban247's picture
Upload 88 files
d5f2660 verified
"""Medical AI models server (Classification, Detection, Segmentation)"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
import sys
import json
from datetime import datetime
import uvicorn
import warnings
import base64
from io import BytesIO
# Handle both direct execution and module import
if __name__ == "__main__":
# Direct execution: add parent directory to path
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.logger import setup_logger
from src.config import (
DOWNSAMPLE_FACTOR, MAX_BRAIN_POINTS, MAX_TUMOR_POINTS,
SLICE_OFFSETS_3, SLICE_OFFSETS_5
)
else:
# Module import: use relative imports
from .logger import setup_logger
from .config import (
DOWNSAMPLE_FACTOR, MAX_BRAIN_POINTS, MAX_TUMOR_POINTS,
SLICE_OFFSETS_3, SLICE_OFFSETS_5
)
warnings.filterwarnings("ignore")
logger = setup_logger(__name__)
app = FastAPI(title="Medical AI Models Server")
DETECTION_MODELS = {
'Blood_Cell': 'Models/Detection/Blood_Cell.onnx',
'Breast_Cancer': 'Models/Detection/Breast_Cancer.onnx',
'Fracture': 'Models/Detection/Fracture.onnx'
}
CLASSIFICATION_MODELS = {
'Brain_Tumor': 'Models/Classification/brain_tumor',
'Chest_X-Ray': 'Models/Classification/chest-xray',
'Lung_Cancer': 'Models/Classification/lung-cancer'
}
SEGMENTATION_MODELS = {
'brats': 'Models/Seg_3D/Brats.onnx'
}
class DetectionRequest(BaseModel):
image_path: str
model: str
class ClassificationRequest(BaseModel):
image_path: str
model: str
class SegmentationRequest(BaseModel):
case_path: str
model: str = "brats"
detection_models = {} # Cache for loaded YOLO detection models
classification_models_cache = {} # Cache for loaded classification models
def load_detection_models():
"""Pre-load YOLO detection models"""
from ultralytics import YOLO
for model_name, model_path in DETECTION_MODELS.items():
if os.path.exists(model_path):
detection_models[model_name] = YOLO(model_path, task='detect')
logger.info(f"Loaded detection model: {model_name}")
else:
logger.warning(f"Detection model not found: {model_path}")
def load_all_classification_models():
logger.info("Pre-loading classification models...")
for model_name, model_path in CLASSIFICATION_MODELS.items():
if os.path.exists(model_path):
try:
get_classification_model(model_name)
logger.info(f"Pre-loaded classification model: {model_name}")
except Exception as e:
logger.warning(f"Failed to pre-load {model_name}: {e}")
else:
logger.warning(f"Classification model not found: {model_path}")
def image_to_base64(image):
"""Convert PIL Image to base64"""
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def figure_to_base64(fig):
"""Convert matplotlib figure to base64"""
import matplotlib.pyplot as plt
buffered = BytesIO()
fig.savefig(buffered, format='PNG', dpi=150, bbox_inches='tight')
plt.close(fig)
buffered.seek(0)
return base64.b64encode(buffered.read()).decode()
def load_classification_imports():
"""Lazy load classification dependencies"""
try:
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from peft import PeftModel, PeftConfig
from pytorch_grad_cam import GradCAM, GradCAMPlusPlus, EigenCAM, LayerCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchvision.transforms import Compose, Normalize, Resize, CenterCrop, ToTensor
return {
'torch': torch, 'np': np, 'plt': plt, 'Image': Image,
'PeftModel': PeftModel, 'PeftConfig': PeftConfig,
'GradCAM': GradCAM, 'GradCAMPlusPlus': GradCAMPlusPlus,
'EigenCAM': EigenCAM, 'LayerCAM': LayerCAM,
'show_cam_on_image': show_cam_on_image,
'ClassifierOutputTarget': ClassifierOutputTarget,
'AutoImageProcessor': AutoImageProcessor,
'AutoModelForImageClassification': AutoModelForImageClassification,
'Compose': Compose, 'Normalize': Normalize, 'Resize': Resize,
'CenterCrop': CenterCrop, 'ToTensor': ToTensor
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Classification dependencies unavailable: {e}")
def load_segmentation_imports():
"""Lazy load segmentation dependencies"""
try:
import torch
import numpy as np
import nibabel as nib
import onnxruntime as ort
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from matplotlib.colors import ListedColormap
from monai.transforms import (
Compose, LoadImaged, EnsureChannelFirstd, EnsureTyped,
Orientationd, Spacingd, NormalizeIntensityd, SpatialPadd
)
from monai.data import Dataset, DataLoader
return {
'torch': torch, 'np': np, 'nib': nib, 'ort': ort, 'plt': plt,
'Patch': Patch, 'ListedColormap': ListedColormap,
'Compose': Compose, 'LoadImaged': LoadImaged,
'EnsureChannelFirstd': EnsureChannelFirstd, 'EnsureTyped': EnsureTyped,
'Orientationd': Orientationd, 'Spacingd': Spacingd,
'NormalizeIntensityd': NormalizeIntensityd, 'SpatialPadd': SpatialPadd,
'Dataset': Dataset, 'DataLoader': DataLoader
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Segmentation dependencies unavailable: {e}")
def get_classification_model(model_name):
"""Load or retrieve cached classification model"""
# Return cached model if available
if model_name in classification_models_cache:
return classification_models_cache[model_name]
# Validate model exists
if model_name not in CLASSIFICATION_MODELS:
raise HTTPException(status_code=400, detail=f"Model {model_name} not available")
model_path = CLASSIFICATION_MODELS[model_name]
if not os.path.exists(model_path):
raise HTTPException(status_code=404, detail=f"Model path not found: {model_path}")
libs = load_classification_imports()
try:
# Check if model is a LoRA adapter or full model
is_lora_adapter = os.path.exists(os.path.join(model_path, "adapter_config.json"))
if is_lora_adapter:
model_info = _load_lora_model(model_path, libs)
else:
model_info = _load_full_model(model_path, libs)
# Cache model components for reuse
classification_models_cache[model_name] = model_info
logger.info(f"Loaded classification model: {model_name}")
return model_info
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to load model {model_name}: {e}")
def _load_lora_model(model_path, libs):
"""Load LoRA adapter model with base model"""
peft_cfg = libs['PeftConfig'].from_pretrained(model_path)
parent_dir = os.path.dirname(model_path)
cfg_path = os.path.join(parent_dir, "config.json")
if not os.path.exists(cfg_path):
raise FileNotFoundError(f"Missing config.json in {parent_dir}")
with open(cfg_path, "r") as f:
cfg = json.load(f)
class_names = cfg.get("classes", [])
num_classes = len(class_names)
model = libs['AutoModelForImageClassification'].from_pretrained(
peft_cfg.base_model_name_or_path,
num_labels=num_classes,
label2id={cls: i for i, cls in enumerate(class_names)},
id2label={i: cls for i, cls in enumerate(class_names)},
ignore_mismatched_sizes=True,
device_map="auto"
)
model = libs['PeftModel'].from_pretrained(model, model_path)
processor = libs['AutoImageProcessor'].from_pretrained(peft_cfg.base_model_name_or_path)
return {'model': model, 'processor': processor, 'class_names': class_names}
def _load_full_model(model_path, libs):
"""Load full fine-tuned model"""
model = libs['AutoModelForImageClassification'].from_pretrained(model_path, device_map="auto")
processor = libs['AutoImageProcessor'].from_pretrained(model_path)
class_names = [model.config.id2label[i] for i in range(len(model.config.id2label))]
return {'model': model, 'processor': processor, 'class_names': class_names}
@app.post("/detect")
async def detect_objects(request: DetectionRequest):
"""Run YOLO detection on medical image"""
if request.model not in detection_models:
raise HTTPException(status_code=400, detail=f"Model {request.model} not available")
if not os.path.exists(request.image_path):
raise HTTPException(status_code=404, detail=f"Image not found: {request.image_path}")
from PIL import Image
model = detection_models[request.model]
# Run YOLO inference
results = model.predict(source=request.image_path, imgsz=640, verbose=False)
# Extract predictions from results
predictions = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
pred = {
'bbox': box.xyxy[0].tolist(), # [x1, y1, x2, y2]
'confidence': float(box.conf[0]),
'class': int(box.cls[0]),
'class_name': result.names[int(box.cls[0])] if result.names else str(int(box.cls[0]))
}
predictions.append(pred)
# Generate annotated image with bounding boxes
annotated_img = results[0].plot()
# YOLO plot() returns BGR format, convert to RGB for PIL
annotated_img_rgb = annotated_img[:, :, ::-1]
annotated_img_pil = Image.fromarray(annotated_img_rgb)
annotated_base64 = image_to_base64(annotated_img_pil)
return {
'task': 'detection',
'model_used': request.model,
'image_path': request.image_path,
'timestamp': datetime.now().isoformat(),
'predictions': predictions,
'total_detections': len(predictions),
'annotated_image': annotated_base64
}
def get_label(model, idx):
"""Get class label by index"""
id2label = model.config.id2label
key = str(idx) if str(idx) in id2label else idx
return id2label[key]
def preprocess_image_for_classification(image, processor, libs):
"""Preprocess image using training pipeline (Train.py)"""
# Determine image size
size = _get_processor_size(processor)
# Get normalization parameters
normalize = _get_normalization(processor, libs)
# Apply transforms
transforms = libs['Compose']([
libs['Resize'](size),
libs['CenterCrop'](size),
libs['ToTensor'](),
normalize
])
return transforms(image)
def _get_processor_size(processor):
"""Extract image size from processor"""
if not hasattr(processor, 'size'):
return 224
if isinstance(processor.size, dict):
return processor.size.get("shortest_edge", 224)
return processor.size
def _get_normalization(processor, libs):
"""Get normalization transform from processor or use defaults"""
if hasattr(processor, 'image_mean') and hasattr(processor, 'image_std'):
return libs['Normalize'](mean=processor.image_mean, std=processor.image_std)
# Default ImageNet normalization
return libs['Normalize'](mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def generate_multiple_cam_visualizations(model, image, processor, class_names, probs, top_idx, top_label, top_prob, libs):
"""
Generate multiple CAM visualizations (GradCAM, GradCAM++, EigenCAM, LayerCAM)
Uses 3 optimal target layers for MobileViT:
1. conv_1x1_exp: Final conv layer (highest-level features, most reliable)
2. fusion: CNN+Transformer fusion (captures both modalities)
3. conv_projection: After transformer (attention visualization)
Excludes ScoreCAM (too slow for production)
"""
# Use processor for CAM
inputs = processor(images=image, return_tensors="pt")
img_tensor = inputs["pixel_values"].squeeze(0)
# Ensure tensor is on same device as model
device = next(model.parameters()).device
img_tensor = img_tensor.to(device)
# Wrapper for CAM methods
class HuggingfaceToTensorModelWrapper(libs['torch'].nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x):
return self.model(x).logits
model.eval()
targets = [libs['ClassifierOutputTarget'](top_idx)]
wrapper = HuggingfaceToTensorModelWrapper(model)
# Determine if PEFT model
is_peft = isinstance(model, libs['PeftModel'])
base_model = model.base_model.model if is_peft else model
# Define 3 optimal target layers for MobileViT (ordered by importance)
target_layers = {}
# Layer 1: Final conv layer (MOST IMPORTANT - always works well)
target_layers['conv_1x1_exp'] = base_model.mobilevit.conv_1x1_exp
# Layer 2: Last fusion layer (CNN+Transformer combination)
if hasattr(base_model.mobilevit.encoder.layer[-1], 'fusion'):
target_layers['last_fusion'] = base_model.mobilevit.encoder.layer[-1].fusion
# Layer 3: Last conv projection (after transformer processing)
if hasattr(base_model.mobilevit.encoder.layer[-1], 'conv_projection'):
target_layers['last_conv_proj'] = base_model.mobilevit.encoder.layer[-1].conv_projection
# CAM methods (4 fast methods, excluding ScoreCAM)
cam_methods = {
'GradCAM': libs['GradCAM'],
'GradCAM++': libs['GradCAMPlusPlus'],
'EigenCAM': libs['EigenCAM'],
'LayerCAM': libs['LayerCAM']
}
# Generate CAM visualizations (4 methods × 3 layers = 12 total)
cam_results = {}
rgb_img = libs['np'].float32(image.resize((256, 256))) / 255.0
for layer_name, target_layer in target_layers.items():
for method_name, cam_class in cam_methods.items():
try:
with cam_class(model=wrapper, target_layers=[target_layer]) as cam:
grayscale_cam = cam(input_tensor=img_tensor.unsqueeze(0), targets=targets)[0, :]
# Create visualization
cam_img = libs['show_cam_on_image'](rgb_img, grayscale_cam, use_rgb=True)
# Create figure for this combination
fig, axes = libs['plt'].subplots(1, 2, figsize=(12, 5))
axes[0].imshow(image)
axes[0].set_title("Original Image", fontsize=12, fontweight='bold')
axes[0].axis("off")
axes[1].imshow(cam_img)
axes[1].set_title(f"{method_name} ({layer_name}): {top_label} ({top_prob*100:.2f}%)",
fontsize=11, fontweight='bold')
axes[1].axis("off")
legend_text = " | ".join([f"{cls}: {p*100:.2f}%" for cls, p in zip(class_names, probs)])
libs['plt'].figtext(0.5, 0.02, legend_text, ha="center", fontsize=10, style='italic')
libs['plt'].tight_layout(rect=[0, 0.08, 1, 1])
# Store result
key = f"{method_name}_{layer_name}"
cam_results[key] = figure_to_base64(fig)
libs['plt'].close(fig)
except Exception as e:
logger.warning(f"Failed to generate {method_name} with {layer_name}: {e}")
continue
return cam_results
@app.post("/classify")
async def classify_image(request: ClassificationRequest):
"""Classification with multiple CAM visualizations (GradCAM, GradCAM++, EigenCAM, LayerCAM)"""
if not os.path.exists(request.image_path):
raise HTTPException(status_code=404, detail=f"Image not found: {request.image_path}")
libs = load_classification_imports()
model_info = get_classification_model(request.model)
model = model_info['model']
processor = model_info['processor']
class_names = model_info['class_names']
image = libs['Image'].open(request.image_path).convert("RGB")
# Use Train.py preprocessing for accurate predictions
img_tensor = preprocess_image_for_classification(image, processor, libs)
# Ensure tensor is on same device as model
device = next(model.parameters()).device
img_tensor = img_tensor.to(device)
with libs['torch'].no_grad():
logits = model(img_tensor.unsqueeze(0)).logits
probs = libs['torch'].softmax(logits, dim=-1)[0].cpu().numpy()
top_idx = int(libs['np'].argmax(probs))
top_label = class_names[top_idx]
top_prob = probs[top_idx]
predictions = [
{'class_name': class_name, 'confidence': float(prob), 'class_id': i}
for i, (class_name, prob) in enumerate(zip(class_names, probs))
]
predictions.sort(key=lambda x: x['confidence'], reverse=True)
# Generate multiple CAM visualizations
cam_visualizations = {}
try:
cam_visualizations = generate_multiple_cam_visualizations(
model, image, processor, class_names, probs, top_idx, top_label, top_prob, libs
)
logger.info(f"Generated {len(cam_visualizations)} CAM visualizations")
except Exception as e:
logger.error(f"CAM generation failed: {str(e)}")
logger.exception("Full error:")
return {
'task': 'classification',
'model_used': request.model,
'image_path': request.image_path,
'timestamp': datetime.now().isoformat(),
'top_prediction': {'class_name': top_label, 'confidence': float(top_prob)},
'all_predictions': predictions,
'class_names': class_names,
'cam_visualizations': cam_visualizations,
'note': f'Generated {len(cam_visualizations)} CAM visualizations' if cam_visualizations else 'CAM generation failed'
}
class ConvertToMultiChannelBasedOnBratsClassesd:
"""Convert BraTS labels to multi-channel (TC, WT, ET)"""
def __init__(self, keys):
self.keys = [keys] if isinstance(keys, str) else keys
def __call__(self, data):
libs = load_segmentation_imports()
d = dict(data)
for key in self.keys:
result = []
# Channel 0: Tumor Core (TC) = NCR/NET (1) or ET (4)
result.append(libs['torch'].logical_or(d[key] == 1, d[key] == 4))
# Channel 1: Whole Tumor (WT) = TC + ED (2)
result.append(libs['torch'].logical_or(libs['torch'].logical_or(d[key] == 1, d[key] == 4), d[key] == 2))
# Channel 2: Enhancing Tumor (ET) = ET (4) only
result.append(d[key] == 4)
d[key] = libs['torch'].stack(result, axis=0).float()
return d
def get_segmentation_transforms(roi_size=(128, 128, 128)):
"""Create MONAI preprocessing pipeline"""
libs = load_segmentation_imports()
return libs['Compose']([
libs['LoadImaged'](keys=["image", "label"]), # Load NIfTI files
libs['EnsureChannelFirstd'](keys="image"), # Ensure channel-first format
libs['EnsureTyped'](keys=["image", "label"]), # Convert to tensors
ConvertToMultiChannelBasedOnBratsClassesd(keys=["label"]), # Convert labels to multi-channel
libs['Orientationd'](keys=["image", "label"], axcodes="RAS"), # Standardize orientation
libs['Spacingd'](keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), # Resample
libs['SpatialPadd'](keys=["image", "label"], spatial_size=roi_size, mode="constant"), # Pad to fixed size
libs['NormalizeIntensityd'](keys="image", nonzero=True, channel_wise=True), # Normalize intensities
])
def calculate_dice_score(pred, target, epsilon=1e-8):
"""Calculate Dice coefficient per channel"""
dice_scores = []
for c in range(pred.shape[0]):
pred_c = pred[c].flatten()
target_c = target[c].flatten()
intersection = (pred_c * target_c).sum()
dice = (2.0 * intersection + epsilon) / (pred_c.sum() + target_c.sum() + epsilon)
dice_scores.append(dice.item())
return dice_scores
def visualize_segmentation(pred_data, libs):
"""Create segmentation visualization with MRI modalities"""
case_id = pred_data['case_id']
image = pred_data['image']
pred = pred_data['pred']
label = pred_data['label']
dice = pred_data['dice']
# Find slice with most tumor for visualization
tumor_per_slice = label.sum(axis=(0, 1, 2))
slice_idx = int(libs['np'].argmax(tumor_per_slice))
if tumor_per_slice[slice_idx] == 0:
slice_idx = label.shape[3] // 2 # Use middle slice if no tumor
# Extract all MRI modalities for selected slice
flair = image[0, :, :, slice_idx]
t1 = image[1, :, :, slice_idx]
t1ce = image[2, :, :, slice_idx]
t2 = image[3, :, :, slice_idx]
def multi_to_single(multi_slice):
"""Convert multi-channel segmentation to single-channel with BraTS labels"""
single = libs['np'].zeros_like(multi_slice[0])
et_mask = multi_slice[2] > 0.5 # ET = 4
tc_mask = (multi_slice[0] > 0.5) & (~et_mask) # NCR/NET = 1
wt_mask = (multi_slice[1] > 0.5) & (libs['np'].logical_not(multi_slice[0] > 0.5)) # ED = 2
single[et_mask] = 4
single[tc_mask] = 1
single[wt_mask] = 2
return single
# Convert multi-channel to single-channel for visualization
label_slice = multi_to_single(label[:, :, :, slice_idx])
pred_slice = multi_to_single(pred[:, :, :, slice_idx])
# Create 2x4 grid: top row = modalities, bottom row = segmentations
fig, axes = libs['plt'].subplots(2, 4, figsize=(24, 12))
# Add title with case info and Dice scores
title = f"{case_id} - Axial Slice {slice_idx} (Tumor Vol: {label.sum(axis=(0,1,2))[slice_idx]:.0f} vox)\n"
title += f"Dice: TC={dice[0]:.3f}, WT={dice[1]:.3f}, ET={dice[2]:.3f} | Avg={libs['np'].mean(dice):.3f}"
fig.suptitle(title, fontsize=14, fontweight='bold')
axes[0, 0].imshow(flair.T, cmap='gray', origin='lower')
axes[0, 0].set_title('FLAIR', fontsize=12); axes[0, 0].axis('off')
axes[0, 1].imshow(t1.T, cmap='gray', origin='lower')
axes[0, 1].set_title('T1', fontsize=12); axes[0, 1].axis('off')
axes[0, 2].imshow(t1ce.T, cmap='gray', origin='lower')
axes[0, 2].set_title('T1CE', fontsize=12); axes[0, 2].axis('off')
axes[0, 3].imshow(t2.T, cmap='gray', origin='lower')
axes[0, 3].set_title('T2', fontsize=12); axes[0, 3].axis('off')
# Bottom row: Segmentation results with color-coded labels
colors = ['black', 'red', 'green', 'white', 'blue'] # 0=bg, 1=NCR, 2=ED, 3=unused, 4=ET
cmap = libs['ListedColormap'](colors)
axes[1, 0].imshow(label_slice.T, cmap=cmap, origin='lower', vmin=0, vmax=4)
axes[1, 0].set_title('Ground Truth', fontsize=12, fontweight='bold'); axes[1, 0].axis('off')
axes[1, 1].imshow(pred_slice.T, cmap=cmap, origin='lower', vmin=0, vmax=4)
axes[1, 1].set_title('Prediction', fontsize=12, fontweight='bold'); axes[1, 1].axis('off')
# Overlay: Show matches (green) and errors (red)
axes[1, 2].imshow(t1ce.T, cmap='gray', origin='lower', alpha=0.7)
match_mask = (label_slice == pred_slice) & (label_slice > 0)
error_mask = (label_slice != pred_slice) & ((label_slice > 0) | (pred_slice > 0))
axes[1, 2].imshow(match_mask.T.astype(float), cmap='Greens', alpha=0.6, origin='lower')
axes[1, 2].imshow(error_mask.T.astype(float), cmap='Reds', alpha=0.6, origin='lower')
axes[1, 2].set_title('Overlay (Green=Match, Red=Error)', fontsize=12, fontweight='bold'); axes[1, 2].axis('off')
axes[1, 3].axis('off')
legend_elements = [libs['Patch'](facecolor='black', label='0: Background'),
libs['Patch'](facecolor='red', label='1: NCR/NET (TC)'),
libs['Patch'](facecolor='green', label='2: ED (WT)'),
libs['Patch'](facecolor='blue', label='4: ET')]
fig.legend(handles=legend_elements, loc='lower center', fontsize='medium', ncol=4, bbox_to_anchor=(0.5, -0.02))
libs['plt'].tight_layout(rect=[0, 0.08, 1, 1])
return figure_to_base64(fig)
def generate_additional_visualizations(pred_data, libs):
"""Generate multi-slice visualizations (1, 3, 5 slices)"""
case_id = pred_data['case_id']
image = pred_data['image']
pred = pred_data['pred']
total_slices = image.shape[3]
# Find slice with maximum tumor segmentation
tumor_per_slice = pred.sum(axis=(0, 1, 2))
max_slice = int(libs['np'].argmax(tumor_per_slice))
if tumor_per_slice[max_slice] == 0:
max_slice = total_slices // 2
def multi_to_single(multi_slice):
"""Convert multi-channel to single-channel with BraTS labels"""
single = libs['np'].zeros_like(multi_slice[0])
et_mask = multi_slice[2] > 0.5
tc_mask = (multi_slice[0] > 0.5) & (~et_mask)
wt_mask = (multi_slice[1] > 0.5) & (libs['np'].logical_not(multi_slice[0] > 0.5))
single[et_mask] = 4
single[tc_mask] = 1
single[wt_mask] = 2
return single
# Color legend for all visualizations
legend_elements = [libs['plt'].Rectangle((0,0),1,1, facecolor='red', alpha=0.5, label='NCR/NET'),
libs['plt'].Rectangle((0,0),1,1, facecolor='green', alpha=0.5, label='ED'),
libs['plt'].Rectangle((0,0),1,1, facecolor='blue', alpha=0.5, label='ET')]
visualization_b64 = {}
# 1. Single slice visualization
fig, ax = libs['plt'].subplots(1, 1, figsize=(6, 6))
fig.suptitle(f'{case_id} - Single Most Segmented Slice', fontsize=12, fontweight='bold')
img = image[2, :, :, max_slice] # Use T1CE modality
pred_slice = multi_to_single(pred[:, :, :, max_slice])
ax.imshow(libs['np'].rot90(img, k=2), cmap='gray')
# Overlay each tumor class with different color
for lbl, color in [(1, 'red'), (2, 'green'), (4, 'blue')]:
mask = pred_slice == lbl
ax.imshow(libs['np'].rot90(mask, k=2), cmap=libs['ListedColormap'](['none', color]), alpha=0.5)
ax.set_title(f'Slice {max_slice}')
ax.axis('off')
fig.legend(handles=legend_elements, loc='lower center', fontsize='small', ncol=3, bbox_to_anchor=(0.5, -0.05))
libs['plt'].tight_layout()
visualization_b64['single_slice'] = figure_to_base64(fig)
# 2. Three-slice visualization (offset by 10)
offsets = SLICE_OFFSETS_3
slices_3 = []
for offset in offsets:
idx_val = max_slice + offset
if 0 <= idx_val < total_slices:
slices_3.append(idx_val)
# Fill to 3 slices if needed
while len(slices_3) < 3:
if slices_3[0] > 0:
slices_3.insert(0, slices_3[0] - 1)
elif slices_3[-1] < total_slices - 1:
slices_3.append(slices_3[-1] + 1)
else:
break
slices_3 = slices_3[:3]
fig, axes = libs['plt'].subplots(1, 3, figsize=(24, 8))
fig.suptitle(f'{case_id} - 3 Slices (Jump=10)', fontsize=18, fontweight='bold', y=0.98)
for i, slice_idx in enumerate(slices_3):
img = image[2, :, :, slice_idx]
pred_slice = multi_to_single(pred[:, :, :, slice_idx])
axes[i].imshow(libs['np'].rot90(img, k=2), cmap='gray')
for lbl, color in [(1, 'red'), (2, 'green'), (4, 'blue')]:
mask = pred_slice == lbl
axes[i].imshow(libs['np'].rot90(mask, k=2), cmap=libs['ListedColormap'](['none', color]), alpha=0.5)
axes[i].set_title(f'Slice {slice_idx}', fontsize=16, fontweight='bold', pad=15)
axes[i].axis('off')
fig.legend(handles=legend_elements, loc='lower center', fontsize='large', ncol=3, bbox_to_anchor=(0.5, -0.01))
libs['plt'].tight_layout(rect=[0, 0.03, 1, 0.96])
visualization_b64['three_slices'] = figure_to_base64(fig)
# 3. Five-slice visualization (offset by 5)
offsets = SLICE_OFFSETS_5
slices_5 = []
for offset in offsets:
idx_val = max_slice + offset
if 0 <= idx_val < total_slices:
slices_5.append(idx_val)
# Fill to 5 slices if needed
while len(slices_5) < 5:
if slices_5[0] > 0:
slices_5.insert(0, slices_5[0] - 1)
elif slices_5[-1] < total_slices - 1:
slices_5.append(slices_5[-1] + 1)
else:
break
slices_5 = slices_5[:5]
fig, axes = libs['plt'].subplots(1, 5, figsize=(30, 6))
fig.suptitle(f'{case_id} - 5 Slices (Jump=5)', fontsize=18, fontweight='bold', y=0.98)
for i, slice_idx in enumerate(slices_5):
img = image[2, :, :, slice_idx]
pred_slice = multi_to_single(pred[:, :, :, slice_idx])
axes[i].imshow(libs['np'].rot90(img, k=2), cmap='gray')
for lbl, color in [(1, 'red'), (2, 'green'), (4, 'blue')]:
mask = pred_slice == lbl
axes[i].imshow(libs['np'].rot90(mask, k=2), cmap=libs['ListedColormap'](['none', color]), alpha=0.5)
axes[i].set_title(f'Slice {slice_idx}', fontsize=14, fontweight='bold', pad=12)
axes[i].axis('off')
fig.legend(handles=legend_elements, loc='lower center', fontsize='large', ncol=3, bbox_to_anchor=(0.5, -0.01))
libs['plt'].tight_layout(rect=[0, 0.03, 1, 0.96])
visualization_b64['five_slices'] = figure_to_base64(fig)
return visualization_b64
def create_3d_prediction_html(pred_data, libs, downsample_factor=None, max_brain_points=None, max_tumor_points=None):
"""Create interactive 3D Plotly visualization"""
# Use config values if not provided
if downsample_factor is None:
downsample_factor = DOWNSAMPLE_FACTOR
if max_brain_points is None:
max_brain_points = MAX_BRAIN_POINTS
if max_tumor_points is None:
max_tumor_points = MAX_TUMOR_POINTS
try:
case_id = pred_data['case_id']
pred = pred_data['pred']
case_path = f"Files_Seg3D/{case_id}"
t1ce_file = os.path.join(case_path, f"{case_id}_t1ce.nii")
if not os.path.exists(t1ce_file):
logger.error(f"T1CE file not found: {t1ce_file}")
return None
import nibabel as nib
import plotly.graph_objects as go
import plotly.io as pio
# Load T1CE MRI scan
t1ce_img = nib.load(t1ce_file)
t1ce_data = t1ce_img.get_fdata()
# Downsample for performance
brain = t1ce_data[::downsample_factor, ::downsample_factor, ::downsample_factor]
pred_down = pred[:, ::downsample_factor, ::downsample_factor, ::downsample_factor]
brain_norm = (brain - brain.min()) / (brain.max() - brain.min())
# Convert multi-channel to single-channel segmentation
pred_seg = libs['np'].zeros_like(pred_down[0])
pred_seg[pred_down[1] > 0.5] = 2 # ED
pred_seg[pred_down[0] > 0.5] = 1 # NCR/NET
pred_seg[pred_down[2] > 0.5] = 4 # ET
# Extract brain tissue coordinates (threshold at 0.2)
brain_mask = brain_norm > 0.2
coords = libs['np'].where(brain_mask)
if len(coords[0]) == 0:
logger.error("No brain tissue found")
return None
# Randomly sample brain points for performance
brain_sample_idx = libs['np'].random.choice(len(coords[0]), min(max_brain_points, len(coords[0])), replace=False)
# Create 3D scatter plot
fig = go.Figure()
# Add brain tissue as background
fig.add_trace(go.Scatter3d(
x=coords[0][brain_sample_idx],
y=coords[1][brain_sample_idx],
z=coords[2][brain_sample_idx],
mode='markers',
marker=dict(size=2, color='lightgray', opacity=0.4),
name='Brain Tissue',
showlegend=True
))
# Add tumor regions with different colors
pred_tumor_classes = {
1: ("NCR/NET", "red", 0.3),
2: ("ED", "green", 0.05),
4: ("ET", "blue", 0.1)
}
for lbl, (label_name, color, opacity) in pred_tumor_classes.items():
tumor_coords = libs['np'].where(pred_seg == lbl)
if tumor_coords[0].size > 0:
# Sample tumor points for performance
sample_idx = libs['np'].random.choice(len(tumor_coords[0]), min(max_tumor_points, len(tumor_coords[0])), replace=False)
fig.add_trace(go.Scatter3d(
x=tumor_coords[0][sample_idx],
y=tumor_coords[1][sample_idx],
z=tumor_coords[2][sample_idx],
mode='markers',
marker=dict(size=4, color=color, opacity=opacity),
name=label_name,
showlegend=True
))
fig.update_layout(
title=dict(text=f'<b>3D Brain Tumor Prediction: {case_id}</b>', x=0.5, xanchor='center', font=dict(size=16)),
scene=dict(
xaxis_title='Sagittal', yaxis_title='Coronal', zaxis_title='Axial',
aspectmode='data', camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
xaxis=dict(showbackground=True, backgroundcolor="rgb(230, 230, 230)"),
yaxis=dict(showbackground=True, backgroundcolor="rgb(230, 230, 230)"),
zaxis=dict(showbackground=True, backgroundcolor="rgb(230, 230, 230)")
),
height=700, width=1000, margin=dict(l=0, r=0, b=80, t=120),
legend=dict(x=0.02, y=0.98, bgcolor='rgba(255,255,255,0.8)', bordercolor='black', borderwidth=1, font=dict(size=12))
)
# Generate HTML with centered layout
html_content = pio.to_html(fig, include_plotlyjs='cdn')
# Add CSS to center the plot in the viewport
centered_html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<style>
body {{
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
background-color: #f5f5f5;
}}
.plotly-graph-div {{
margin: auto;
}}
</style>
</head>
<body>
{html_content.split('<body>')[1].split('</body>')[0]}
</body>
</html>
"""
html_b64 = base64.b64encode(centered_html.encode()).decode()
logger.info(f"3D prediction HTML generated for {case_id}")
return html_b64
except Exception as e:
logger.error(f"Error creating 3D prediction HTML: {e}")
return None
@app.post("/segment")
async def segment_brain_tumor(request: SegmentationRequest):
"""
Run 3D brain tumor segmentation on BraTS case
Expects case folder with: flair, t1, t1ce, t2, seg NIfTI files
Returns Dice scores, visualizations, volumetric and spatial analysis
"""
if request.model not in SEGMENTATION_MODELS:
raise HTTPException(status_code=400, detail=f"Model {request.model} not available")
if not os.path.exists(request.case_path):
raise HTTPException(status_code=404, detail=f"Case not found: {request.case_path}")
libs = load_segmentation_imports()
case_id = os.path.basename(request.case_path)
# Verify all required modalities exist
required = ['flair', 't1', 't1ce', 't2', 'seg']
file_paths = {}
for mod in required:
fp = os.path.join(request.case_path, f"{case_id}_{mod}.nii")
if not os.path.exists(fp):
raise HTTPException(status_code=404, detail=f"Missing: {fp}")
file_paths[mod] = fp
data_dict = {
"image": [file_paths['flair'], file_paths['t1'], file_paths['t1ce'], file_paths['t2']],
"label": file_paths['seg'],
"case_id": case_id
}
transforms = get_segmentation_transforms()
dataset = libs['Dataset'](data=[data_dict], transform=transforms)
# Use num_workers=0 to avoid multiprocessing issues with relative imports
dataloader = libs['DataLoader'](dataset, batch_size=1, shuffle=False, num_workers=0)
model_path = SEGMENTATION_MODELS[request.model]
if not os.path.exists(model_path):
raise HTTPException(status_code=404, detail=f"Model not found: {model_path}")
session_options = libs['ort'].SessionOptions()
ort_session = libs['ort'].InferenceSession(model_path, sess_options=session_options,
providers=['CPUExecutionProvider'])
for batch_data in dataloader:
images = batch_data["image"]
labels = batch_data["label"]
images_np = images.cpu().numpy()
ort_inputs = {ort_session.get_inputs()[0].name: images_np}
outputs_np = ort_session.run(None, ort_inputs)[0]
outputs = libs['torch'].from_numpy(outputs_np)
outputs = libs['torch'].sigmoid(outputs)
outputs = (outputs > 0.5).float()
dice_scores = calculate_dice_score(outputs[0], labels[0])
pred_data = {
'case_id': case_id,
'image': images[0].cpu().numpy(),
'pred': outputs[0].cpu().numpy(),
'label': labels[0].cpu().numpy(),
'dice': dice_scores
}
# Calculate volumetric analysis
voxel_volume = 1.5 * 1.5 * 2.0 # mm³ per voxel (from spacing transform)
pred_np = outputs[0].cpu().numpy()
# Calculate volumes for each tumor region (convert mm³ to cm³)
tc_volume = float(libs['np'].sum(pred_np[0] > 0.5) * voxel_volume / 1000) # Tumor Core
wt_volume = float(libs['np'].sum(pred_np[1] > 0.5) * voxel_volume / 1000) # Whole Tumor
et_volume = float(libs['np'].sum(pred_np[2] > 0.5) * voxel_volume / 1000) # Enhancing Tumor
# Calculate derived volumes
ncr_volume = tc_volume - et_volume # Necrotic core = TC - ET
ed_volume = wt_volume - tc_volume # Edema = WT - TC
# Calculate spatial analysis: tumor location (center of mass)
if libs['np'].sum(pred_np[1] > 0.5) > 0: # Use whole tumor channel
tumor_coords = libs['np'].where(pred_np[1] > 0.5)
center_of_mass = {
'sagittal': float(libs['np'].mean(tumor_coords[0])),
'coronal': float(libs['np'].mean(tumor_coords[1])),
'axial': float(libs['np'].mean(tumor_coords[2]))
}
else:
center_of_mass = None
# Calculate spatial analysis: tumor extent (bounding box)
if libs['np'].sum(pred_np[1] > 0.5) > 0:
tumor_coords = libs['np'].where(pred_np[1] > 0.5)
extent = {
'sagittal_range': [int(tumor_coords[0].min()), int(tumor_coords[0].max())],
'coronal_range': [int(tumor_coords[1].min()), int(tumor_coords[1].max())],
'axial_range': [int(tumor_coords[2].min()), int(tumor_coords[2].max())],
'sagittal_span_mm': float((tumor_coords[0].max() - tumor_coords[0].min()) * 1.5),
'coronal_span_mm': float((tumor_coords[1].max() - tumor_coords[1].min()) * 1.5),
'axial_span_mm': float((tumor_coords[2].max() - tumor_coords[2].min()) * 2.0)
}
else:
extent = None
# Generate all visualizations
main_viz_b64 = visualize_segmentation(pred_data, libs)
additional_viz_b64 = generate_additional_visualizations(pred_data, libs)
html_3d_b64 = create_3d_prediction_html(pred_data, libs)
class_names = ['Tumor Core (TC)', 'Whole Tumor (WT)', 'Enhancing Tumor (ET)']
result = {
'task': 'segmentation',
'model_used': request.model,
'case_path': request.case_path,
'case_id': case_id,
'timestamp': datetime.now().isoformat(),
'dice_scores': {class_names[i]: dice_scores[i] for i in range(len(class_names))},
'average_dice': float(libs['np'].mean(dice_scores)),
'volumetric_analysis': {
'tumor_core_volume_cm3': round(tc_volume, 2),
'whole_tumor_volume_cm3': round(wt_volume, 2),
'enhancing_tumor_volume_cm3': round(et_volume, 2),
'necrotic_core_volume_cm3': round(ncr_volume, 2),
'edema_volume_cm3': round(ed_volume, 2),
'voxel_spacing_mm': [1.5, 1.5, 2.0]
},
'spatial_analysis': {
'center_of_mass': center_of_mass,
'tumor_extent': extent
},
'visualization': main_viz_b64,
'additional_visualizations': additional_viz_b64,
'class_names': class_names
}
if html_3d_b64:
result['3d_html_visualization'] = html_3d_b64
return result
@app.get("/models")
async def get_models():
available_class = [m for m, p in CLASSIFICATION_MODELS.items() if os.path.exists(p)]
available_seg = [m for m, p in SEGMENTATION_MODELS.items() if os.path.exists(p)]
return {
'detection_models': list(detection_models.keys()),
'classification_models': available_class,
'segmentation_models': available_seg
}
@app.get("/health")
async def health_check():
available_class = [m for m, p in CLASSIFICATION_MODELS.items() if os.path.exists(p)]
available_seg = [m for m, p in SEGMENTATION_MODELS.items() if os.path.exists(p)]
return {
'status': 'healthy',
'detection_models': len(detection_models),
'classification_models': len(available_class),
'segmentation_models': len(available_seg)
}
@app.get("/")
async def root():
return {
'message': 'Medical AI Models Server',
'version': '3.0',
'endpoints': {
'detection': '/detect',
'classification': '/classify',
'segmentation': '/segment',
'models': '/models',
'health': '/health'
}
}
@app.on_event("startup")
async def startup_event():
logger.info("="*80)
logger.info("MEDICAL AI MODELS SERVER")
logger.info("="*80)
load_detection_models()
load_all_classification_models()
available_segmentation = []
for model_name, model_path in SEGMENTATION_MODELS.items():
if os.path.exists(model_path):
available_segmentation.append(model_name)
logger.info(f"Segmentation models available: {len(available_segmentation)}")
logger.info(f"Available: {available_segmentation}")
logger.info("="*80)
logger.info("SERVER READY - ALL MODELS PRE-LOADED!")
logger.info("="*80)
if __name__ == '__main__':
uvicorn.run(app, host="0.0.0.0", port=8000)