Ministrals_demo / app.py
Jofthomas's picture
Update app.py
f87a4ad verified
raw
history blame
37.9 kB
import base64
from http import HTTPStatus
import os
import uuid
import time
from datetime import datetime, timedelta
import torch
import gradio as gr
from gradio_client import utils as client_utils
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
import modelscope_studio.components.pro as pro
from config import DEFAULT_THEME, LIGHT_THEME, DEFAULT_SYS_PROMPT,DEFAULT_MODEL_SIZE, save_history, user_config, bot_config, welcome_config, markdown_config, upload_config, MINISTRAL_MODELS
from ui_components.thinking_button import ThinkingButton
import spaces
try:
from transformers import Mistral3ForConditionalGeneration, AutoProcessor, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import hf_hub_download
from threading import Thread
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
print("Warning: transformers not available. Running in demo mode only.")
MODEL_CACHE = {}
SYSTEM_PROMPT_CACHE = {}
PROCESSOR_CACHE = {}
print("=" * 50)
print("πŸš€ Ministral Demo Starting")
print(f" Model cache initialized (empty)")
print(f" Processor cache initialized (empty)")
print(f" System prompt cache initialized (empty)")
print("=" * 50)
def log_with_time(message: str):
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3]
print(f"[{timestamp}] {message}")
def log_cache_status():
log_with_time(f"πŸ“¦ Cache status: {len(MODEL_CACHE)} models, {len(PROCESSOR_CACHE)} processors, {len(SYSTEM_PROMPT_CACHE)} prompts cached")
def load_system_prompt(model_id: str) -> str:
cache_key = model_id
if cache_key in SYSTEM_PROMPT_CACHE:
log_with_time(f"πŸ“‹ System prompt cache hit for {model_id.split('/')[-1]}")
cached_prompt = SYSTEM_PROMPT_CACHE[cache_key]
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = model_id.split("/")[-1]
return cached_prompt.format(name=model_name, today=today, yesterday=yesterday)
try:
log_with_time(f"πŸ“₯ Downloading system prompt for {model_id.split('/')[-1]}...")
start = time.time()
file_path = hf_hub_download(repo_id=model_id, filename="SYSTEM_PROMPT.txt")
with open(file_path, "r") as file:
system_prompt = file.read()
SYSTEM_PROMPT_CACHE[cache_key] = system_prompt
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = model_id.split("/")[-1]
log_with_time(f"βœ… System prompt loaded in {time.time() - start:.2f}s")
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
except Exception as e:
log_with_time(f"⚠️ Could not load system prompt: {e}")
return DEFAULT_SYS_PROMPT
def get_processor_and_tokenizer(model_id: str):
if model_id in PROCESSOR_CACHE:
log_with_time(f"πŸ“‹ Processor cache hit for {model_id.split('/')[-1]}")
return PROCESSOR_CACHE[model_id]
try:
log_with_time(f"πŸ“₯ Loading processor for {model_id.split('/')[-1]}...")
start = time.time()
processor = AutoProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
PROCESSOR_CACHE[model_id] = (processor, tokenizer)
log_with_time(f"βœ… Processor loaded in {time.time() - start:.2f}s")
return processor, tokenizer
except Exception as e:
log_with_time(f"❌ Error loading processor: {e}")
return None, None
def get_model_and_processor(model_id: str, show_notification=False):
if not TRANSFORMERS_AVAILABLE:
log_with_time("⚠️ Transformers not available")
return None, None, None
if model_id in MODEL_CACHE:
log_with_time(f"πŸ“‹ Model cache hit for {model_id.split('/')[-1]}")
return MODEL_CACHE[model_id]
model_name = model_id.split("/")[-1]
try:
if show_notification:
gr.Info(f"πŸ“₯ Loading {model_name}... This may take a few minutes on first use.", duration=15)
total_start = time.time()
processor, tokenizer = get_processor_and_tokenizer(model_id)
if processor is None or tokenizer is None:
return None, None, None
log_with_time(f"πŸ“₯ Loading model weights for {model_name}...")
model_start = time.time()
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
).eval()
log_with_time(f"βœ… Model weights loaded in {time.time() - model_start:.2f}s")
MODEL_CACHE[model_id] = (model, processor, tokenizer)
total_time = time.time() - total_start
log_with_time(f"πŸŽ‰ {model_name} fully loaded in {total_time:.2f}s (cached for future use)")
if show_notification:
gr.Info(f"βœ… {model_name} loaded and ready!", duration=3)
return model, processor, tokenizer
except Exception as e:
log_with_time(f"❌ Error loading model {model_id}: {e}")
if show_notification:
gr.Warning(f"❌ Failed to load model: {str(e)}", duration=10)
return None, None, None
def encode_file_to_base64(file_path):
with open(file_path, "rb") as file:
mime_type = client_utils.get_mimetype(file_path)
bae64_data = base64.b64encode(file.read()).decode("utf-8")
return f"data:{mime_type};base64,{bae64_data}"
def format_history_for_transformers(history, model_id):
system_prompt = load_system_prompt(model_id)
messages = [{
"role": "system",
"content": [{"type": "text", "text": system_prompt}]
}]
for item in history:
if item["role"] == "user":
content = []
text_content = item["content"][1]["content"]
content.append({"type": "text", "text": text_content})
for file_path in item["content"][0]["content"]:
if file_path.startswith("http"):
content.append({"type": "image", "url": file_path})
elif os.path.exists(file_path):
mime_type = client_utils.get_mimetype(file_path)
if mime_type.startswith("image"):
content.append({"type": "image", "url": file_path})
messages.append({
"role": "user",
"content": content
})
elif item["role"] == "assistant":
text_contents = [content["content"] for content in item["content"] if content["type"] == "text"]
if text_contents:
messages.append({
"role": "assistant",
"content": [{"type": "text", "text": " ".join(text_contents)}]
})
return messages
def prepare_inputs(processor, messages):
log_with_time("πŸ“‹ Preparing inputs...")
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
)
if 'token_type_ids' in inputs:
del inputs['token_type_ids']
return inputs
@spaces.GPU(duration=180)
def generate_streaming(model, processor, tokenizer, messages):
log_with_time("πŸš€ Starting streaming generation...")
inputs = prepare_inputs(processor, messages)
log_with_time("πŸ“€ Moving tensors to GPU...")
inputs = {
k: (v.to(model.device, dtype=torch.bfloat16) if v.is_floating_point() else v.to(model.device))
for k, v in inputs.items()
}
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=2048,
temperature=0.15,
do_sample=True,
)
log_with_time("🧡 Starting generation thread...")
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
log_with_time("πŸ“ Streaming tokens...")
generated_text = ""
for token in streamer:
generated_text += token
yield {"token": token, "full_text": generated_text, "done": False}
thread.join()
log_with_time(f"βœ… Generation complete: {len(generated_text)} chars")
yield {"token": "", "full_text": generated_text, "done": True}
class Gradio_Events:
@staticmethod
def submit(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
enable_thinking = state_value["conversation_contexts"][state_value["conversation_id"]]["enable_thinking"]
model_size = state_value["conversation_contexts"][state_value["conversation_id"]].get("model_size", "14B")
model_type = "reasoning" if enable_thinking else "instruct"
model_id = MINISTRAL_MODELS[model_size][model_type]
log_cache_status()
log_with_time(f"πŸ“ Formatting {len(history)} messages for {model_id.split('/')[-1]}")
messages = format_history_for_transformers(history, model_id)
log_with_time(f"πŸ“¨ {len(messages)} messages prepared (including system prompt)")
history.append({
"role": "assistant",
"content": [],
"key": str(uuid.uuid4()),
"loading": True,
"header": f"Ministral-3-{model_size}",
"status": "pending"
})
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value),
}
try:
start_time = time.time()
answer_content = ""
if TRANSFORMERS_AVAILABLE:
needs_download = model_id not in MODEL_CACHE
model, processor, tokenizer = get_model_and_processor(model_id, show_notification=needs_download)
else:
model, processor, tokenizer = None, None, None
if model is not None and processor is not None and tokenizer is not None:
log_with_time(f"πŸš€ Starting inference with {model_id.split('/')[-1]}")
try:
inference_start = time.time()
history[-1]["content"] = [{
"type": "text",
"content": "",
}]
history[-1]["loading"] = False
for chunk in generate_streaming(model, processor, tokenizer, messages):
if chunk.get("token"):
answer_content = chunk["full_text"]
history[-1]["content"][0]["content"] = answer_content
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
if chunk.get("done"):
answer_content = chunk["full_text"]
break
inference_time = time.time() - inference_start
log_with_time(f"βœ… Streaming generation completed in {inference_time:.2f}s")
except Exception as e:
log_with_time(f"❌ Model inference error: {e}")
error_str = str(e)
if "timeout" in error_str.lower() or "aborted" in error_str.lower():
answer_content = "⏱️ GPU timeout: The request took too long to process. Please try:\n\n1. Using a shorter prompt\n2. Reducing image sizes\n3. Trying again in a moment"
elif "memory" in error_str.lower() or "oom" in error_str.lower():
answer_content = "πŸ’Ύ GPU out of memory. Try using a smaller model or reducing input size."
else:
answer_content = f"❌ Model inference failed: {error_str}\n\nPlease try again or check the console for more details."
history[-1]["content"] = [{
"type": "text",
"content": answer_content,
}]
history[-1]["loading"] = False
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
else:
log_with_time(f"⚠️ Using demo mode for: {model_id}")
demo_answer = f"This is a demo response from {model_id}. The application is running in demo mode.\n\nTo use real models, install transformers: `pip install transformers torch`\n\nYour message: {messages[-1]['content'][0]['text'] if messages and messages[-1]['content'] else 'N/A'}"
history[-1]["content"] = [{
"type": "text",
"content": "",
}]
for char in demo_answer:
answer_content += char
history[-1]["content"][0]["content"] = answer_content
history[-1]["loading"] = False
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
time.sleep(0.01)
log_with_time(f"πŸ“Š Response generated: {len(answer_content)} chars")
history[-1]["status"] = "done"
cost_time = "{:.2f}".format(time.time() - start_time)
log_with_time(f"⏱️ Total request time: {cost_time}s")
history[-1]["footer"] = f"{cost_time}s"
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value),
}
except Exception as e:
log_with_time(f"❌ Request failed for {model_id.split('/')[-1]}: {e}")
history[-1]["loading"] = False
history[-1]["status"] = "done"
if not history[-1]["content"]:
history[-1]["content"] = []
history[-1]["content"].append({
"type": "text",
"content": f'<span style="color: var(--color-red-500)">Error: {str(e)}</span>'
})
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
@staticmethod
def add_message(input_value, thinking_btn_state_value, model_selector_state_value, state_value):
text = input_value["text"]
files = input_value["files"]
if not state_value["conversation_id"]:
random_id = str(uuid.uuid4())
history = []
state_value["conversation_id"] = random_id
state_value["conversation_contexts"][state_value["conversation_id"]] = {"history": history}
state_value["conversations"].append({"label": text, "key": random_id})
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
state_value["conversation_contexts"][state_value["conversation_id"]] = {
"history": history,
"enable_thinking": thinking_btn_state_value["enable_thinking"],
"model_size": model_selector_state_value["model_size"]
}
history.append({
"key": str(uuid.uuid4()),
"role": "user",
"content": [{"type": "file", "content": [f for f in files]}, {"type": "text", "content": text}]
})
yield Gradio_Events.preprocess_submit(clear_input=True)(state_value)
try:
for chunk in Gradio_Events.submit(state_value):
yield chunk
except Exception as e:
raise e
finally:
yield Gradio_Events.postprocess_submit(state_value)
@staticmethod
def preprocess_submit(clear_input=True):
def preprocess_submit_handler(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
return {
**({input: gr.update(value=None, loading=True) if clear_input else gr.update(loading=True)} if clear_input else {}),
conversations: gr.update(active_key=state_value["conversation_id"],
items=list(map(lambda item: {**item, "disabled": True if item["key"] != state_value["conversation_id"] else False}, state_value["conversations"]))),
add_conversation_btn: gr.update(disabled=True),
clear_btn: gr.update(disabled=True),
conversation_delete_menu_item: gr.update(disabled=True),
chatbot: gr.update(value=history, bot_config=bot_config(disabled_actions=['edit', 'retry', 'delete']), user_config=user_config(disabled_actions=['edit', 'delete'])),
state: gr.update(value=state_value),
}
return preprocess_submit_handler
@staticmethod
def postprocess_submit(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
return {
input: gr.update(loading=False),
conversation_delete_menu_item: gr.update(disabled=False),
clear_btn: gr.update(disabled=False),
conversations: gr.update(items=state_value["conversations"]),
add_conversation_btn: gr.update(disabled=False),
chatbot: gr.update(value=history, bot_config=bot_config(), user_config=user_config()),
state: gr.update(value=state_value),
}
@staticmethod
def cancel(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history[-1]["loading"] = False
history[-1]["status"] = "done"
history[-1]["footer"] = "Chat completion paused"
return Gradio_Events.postprocess_submit(state_value)
@staticmethod
def delete_message(state_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history = history[:index] + history[index + 1:]
state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = history
return gr.update(value=state_value)
@staticmethod
def edit_message(state_value, chatbot_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history[index]["content"] = chatbot_value[index]["content"]
if not history[index].get("edited"):
history[index]["edited"] = True
history[index]["footer"] = ((history[index]["footer"]) + " " if history[index].get("footer") else "") + "Edited"
return gr.update(value=state_value), gr.update(value=history)
@staticmethod
def regenerate_message(thinking_btn_state_value, model_selector_state_value, state_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history = history[:index]
state_value["conversation_contexts"][state_value["conversation_id"]] = {
"history": history,
"enable_thinking": thinking_btn_state_value["enable_thinking"],
"model_size": model_selector_state_value["model_size"]
}
yield Gradio_Events.preprocess_submit()(state_value)
try:
for chunk in Gradio_Events.submit(state_value):
yield chunk
except Exception as e:
raise e
finally:
yield Gradio_Events.postprocess_submit(state_value)
@staticmethod
def apply_prompt(e: gr.EventData, input_value):
input_value["text"] = e._data["payload"][0]["value"]["description"]
input_value["files"] = e._data["payload"][0]["value"]["urls"]
return gr.update(value=input_value)
@staticmethod
def new_chat(thinking_btn_state, model_selector_state, state_value):
if not state_value["conversation_id"]:
return gr.skip()
state_value["conversation_id"] = ""
thinking_btn_state["enable_thinking"] = True
model_selector_state["model_size"] = "14B"
return gr.update(active_key=state_value["conversation_id"]), gr.update(value=None), gr.update(value=thinking_btn_state), gr.update(value="14B"), gr.update(value=state_value)
@staticmethod
def select_conversation(thinking_btn_state_value, model_selector_state_value, state_value, e: gr.EventData):
active_key = e._data["payload"][0]
if state_value["conversation_id"] == active_key or (active_key not in state_value["conversation_contexts"]):
return gr.skip()
state_value["conversation_id"] = active_key
thinking_btn_state_value["enable_thinking"] = state_value["conversation_contexts"][active_key].get("enable_thinking", False)
model_size = state_value["conversation_contexts"][active_key].get("model_size", "14B")
model_selector_state_value["model_size"] = model_size
return gr.update(active_key=active_key), gr.update(value=state_value["conversation_contexts"][active_key]["history"]), gr.update(value=thinking_btn_state_value), gr.update(value=model_size), gr.update(value=state_value)
@staticmethod
def click_conversation_menu(state_value, e: gr.EventData):
conversation_id = e._data["payload"][0]["key"]
operation = e._data["payload"][1]["key"]
if operation == "delete":
del state_value["conversation_contexts"][conversation_id]
state_value["conversations"] = [item for item in state_value["conversations"] if item["key"] != conversation_id]
if state_value["conversation_id"] == conversation_id:
state_value["conversation_id"] = ""
return gr.update(items=state_value["conversations"], active_key=state_value["conversation_id"]), gr.update(value=None), gr.update(value=state_value)
else:
return gr.update(items=state_value["conversations"]), gr.skip(), gr.update(value=state_value)
return gr.skip()
@staticmethod
def clear_conversation_history(state_value):
if not state_value["conversation_id"]:
return gr.skip()
state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = []
return gr.update(value=None), gr.update(value=state_value)
@staticmethod
def update_browser_state(state_value):
return gr.update(value=dict(conversations=state_value["conversations"], conversation_contexts=state_value["conversation_contexts"]))
@staticmethod
def apply_browser_state(browser_state_value, state_value):
state_value["conversations"] = browser_state_value["conversations"]
state_value["conversation_contexts"] = browser_state_value["conversation_contexts"]
return gr.update(items=browser_state_value["conversations"]), gr.update(value=state_value)
css = """
body, html {
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.gradio-container, .gradio-container.dark {
padding: 0 !important;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.gradio-container > main.fillable {
padding: 0 !important;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
}
#chatbot .ms-gr-ant-col,
#chatbot .ms-gr-antd-col,
#chatbot [class*="ms-gr-ant-col"] {
padding-left: 0 !important;
padding-right: 0 !important;
background-color: transparent !important;
}
#chatbot {
height: calc(100vh - 21px - 16px);
max-height: 1500px;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
}
#chatbot .chatbot-conversations {
height: 100vh;
background-color: var(--ms-gr-ant-color-bg-container, #FFF0C3) !important;
padding-left: 4px;
padding-right: 4px;
}
#chatbot .chatbot-conversations .chatbot-conversations-list {
padding-left: 0;
padding-right: 0;
}
#chatbot .chatbot-chat {
padding: 32px;
padding-bottom: 0;
height: 100%;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
color: var(--ms-gr-ant-color-text, #000000) !important;
}
@media (max-width: 768px) {
#chatbot .chatbot-chat {
padding: 10px;
}
}
#chatbot .chatbot-chat .chatbot-chat-messages {
flex: 1;
background-color: transparent !important;
}
.gradio-container .contain {
background-color: transparent !important;
padding: 0 !important;
}
.user-message-content {
background-color: #ffffff !important;
background: #ffffff !important;
border-radius: 16px !important;
padding: 14px 18px !important;
border: 1px solid #E9E2CB !important;
color: #1E1E1E !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.06) !important;
max-width: fit-content;
}
[class*="chatbot"] [class*="user"] [class*="content"],
[class*="chatbot"] [class*="user"] [class*="bubble"],
[class*="chatbot"] [class*="user"] [class*="message"],
[class*="pro-chatbot"] [class*="user"] {
background-color: transparent !important;
background: transparent !important;
}
.user-message-content,
.user-message-content *:not(code):not(pre) {
background-color: inherit !important;
}
.chatbot-welcome-prompts {
background-color: var(--ms-gr-ant-color-bg-container, #FFF0C3) !important;
}
[class*="welcome"] [class*="prompt"],
[class*="welcome"] [class*="prompts"],
[class*="prompts"] [class*="item"],
[class*="prompts"] [class*="card"],
.ms-gr-antdx-prompts-item,
.ms-gr-pro-chatbot-welcome-prompts {
color: #1E1E1E !important;
}
[class*="welcome"] span,
[class*="welcome"] p,
[class*="welcome"] div,
[class*="prompts"] span,
[class*="prompts"] p,
[class*="prompts"] div,
[class*="prompts"] [class*="title"],
[class*="prompts"] [class*="description"],
.ms-gr-antdx-prompts-item span,
.ms-gr-antdx-prompts-item p,
.ms-gr-antdx-prompts-item div {
color: #1E1E1E !important;
}
[class*="prompts"] [class*="item"] {
background-color: #FFFAEB !important;
border: 1px solid #E9E2CB !important;
}
.chatbot-conversations {
background-color: var(--ms-gr-ant-color-bg-container, #FFF0C3) !important;
}
.chatbot-conversations .ms-gr-ant-typography {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.chatbot-conversations .ms-gr-ant-btn-color-primary.ms-gr-ant-btn-variant-filled {
background-color: var(--ms-gr-ant-color-primary, #FF8205) !important;
color: #ffffff !important;
border: none !important;
}
.chatbot-conversations .ms-gr-ant-btn-color-primary.ms-gr-ant-btn-variant-filled:hover {
background-color: #FA500F !important;
transform: translateY(-1px);
}
.chatbot-conversations .ms-gr-ant-conversations {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.chatbot-conversations .ms-gr-ant-conversations-item {
color: var(--ms-gr-ant-color-text, #000000) !important;
background-color: transparent !important;
}
.chatbot-conversations .ms-gr-ant-conversations-item:hover {
background-color: var(--ms-gr-ant-color-bg-elevated, #E9E2CB) !important;
}
.ant-typography {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.ant-flex {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
#chatbot > .ant-col {
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
}
h1, h2, h3, h4, h5, h6, p, span {
color: var(--ms-gr-ant-color-text);
}
.ms-gr-pro-chatbot-bot,
.ms-gr-pro-chatbot-bot *,
.ms-gr-pro-chatbot-bot .ms-gr-pro-chatbot-message-content,
.ms-gr-pro-chatbot-bot [class*="content"],
[class*="chatbot"] [class*="bot"],
[class*="chatbot"] [class*="bot"] * {
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot h1,
.ms-gr-pro-chatbot-bot h2,
.ms-gr-pro-chatbot-bot h3,
.ms-gr-pro-chatbot-bot h4,
.ms-gr-pro-chatbot-bot h5,
.ms-gr-pro-chatbot-bot h6,
.ms-gr-pro-chatbot-bot strong,
.ms-gr-pro-chatbot-bot b,
.ms-gr-pro-chatbot-bot em,
.ms-gr-pro-chatbot-bot i,
.ms-gr-pro-chatbot-bot p,
.ms-gr-pro-chatbot-bot span,
.ms-gr-pro-chatbot-bot li,
.ms-gr-pro-chatbot-bot ul,
.ms-gr-pro-chatbot-bot ol,
.ms-gr-pro-chatbot-bot a,
[class*="chatbot"] [class*="bot"] h1,
[class*="chatbot"] [class*="bot"] h2,
[class*="chatbot"] [class*="bot"] h3,
[class*="chatbot"] [class*="bot"] strong,
[class*="chatbot"] [class*="bot"] b,
[class*="chatbot"] [class*="bot"] p,
[class*="chatbot"] [class*="bot"] span,
[class*="chatbot"] [class*="bot"] li {
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot [style*="color"],
[class*="chatbot"] [class*="bot"] [style*="color"],
[class*="chatbot"] [class*="bot"] [style] {
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot pre,
.ms-gr-pro-chatbot-bot pre code {
background-color: #E9E2CB !important;
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot code:not(pre code) {
background-color: #E9E2CB !important;
color: #1E1E1E !important;
padding: 2px 6px;
border-radius: 4px;
}
footer {
display: none !important;
}
.footer {
display: none !important;
}
*, *::before, *::after {
transition: none !important;
}
"""
with gr.Blocks(
fill_width=True,
css=css,
theme=gr.themes.Default(primary_hue="orange", secondary_hue="gray", neutral_hue="gray")
) as demo:
state = gr.State({"conversation_contexts": {}, "conversations": [], "conversation_id": "", "oss_cache": {}})
thinking_btn_state = gr.State({"enable_thinking": False})
model_selector_state = gr.State({"model_size": "14B"})
with ms.Application(), antdx.XProvider(theme=LIGHT_THEME), ms.AutoLoading():
with antd.Row(gutter=[20, 20], wrap=False, elem_id="chatbot"):
with antd.Col(md=dict(flex="0 0 260px", span=24, order=0), span=0, order=1, elem_style=dict(width=0)):
with ms.Div(elem_classes="chatbot-conversations"):
with antd.Flex(vertical=True, gap="small", elem_style=dict(height="100%")):
with antd.Flex(vertical=True, gap="small", align="center", elem_style=dict(padding=8)):
with antd.Typography.Title(level=1, elem_style=dict(fontSize=24, margin=0)):
with antd.Flex(align="center", gap="small", justify="center"):
antd.Image('./assets/m-boxed-rainbow.png', preview=False, alt="logo", width=24, height=24)
ms.Span("Ministrals Demo")
with antd.Button(value=None, color="primary", variant="filled", block=True) as add_conversation_btn:
ms.Text("New Conversation")
with ms.Slot("icon"):
antd.Icon("PlusOutlined")
with antdx.Conversations(elem_classes="chatbot-conversations-list") as conversations:
with ms.Slot('menu.items'):
with antd.Menu.Item(label="Delete", key="delete", danger=True) as conversation_delete_menu_item:
with ms.Slot("icon"):
antd.Icon("DeleteOutlined")
with antd.Col(flex=1, elem_style=dict(height="100%")):
with antd.Flex(vertical=True, gap="small", elem_classes="chatbot-chat"):
with antd.Flex(align="center", gap="large", elem_style=dict(paddingBottom=10)):
antd.Typography.Title("Hello, I'm Ministral", level=3, elem_style=dict(margin=0))
with antd.Flex(align="center", gap="small"):
ms.Span("currently using:", elem_style=dict(fontSize=12))
model_display = antd.Typography.Text(
value="mistralai/Ministral-3-14B-Instruct-2512",
copyable=True, code=True,
elem_style=dict(fontSize=12, color="var(--ms-gr-ant-color-text-secondary)")
)
chatbot = pro.Chatbot(elem_classes="chatbot-chat-messages", height=0,
markdown_config=markdown_config(), welcome_config=welcome_config(),
user_config=user_config(), bot_config=bot_config())
with pro.MultimodalInput(placeholder="How can I help you today?", upload_config=upload_config()) as input:
with ms.Slot("prefix"):
with antd.Flex(gap=4, wrap=True, elem_style=dict(maxWidth='40vw', display="inline-flex")):
with antd.Button(value=None, type="text") as clear_btn:
with ms.Slot("icon"):
antd.Icon("ClearOutlined")
model_selector = antd.Select(
value=DEFAULT_MODEL_SIZE, default_value=DEFAULT_MODEL_SIZE,
options=[{"label": "Ministral-3-14B", "value": "14B"}, {"label": "Ministral-3-8B", "value": "8B"}, {"label": "Ministral-3-3B", "value": "3B"}],
elem_style=dict(width=180)
)
with antd.Button("Thinking", shape="round", color="primary") as thinking_btn:
with ms.Slot("icon"):
antd.Icon("SunOutlined")
def toggle_thinking(state_value):
state_value["enable_thinking"] = not state_value["enable_thinking"]
return gr.update(value=state_value)
def apply_thinking_style(state_value):
return gr.update(variant="solid" if state_value["enable_thinking"] else "")
def update_model_size(value, state_value):
state_value["model_size"] = value
return gr.update(value=state_value)
def update_model_display(thinking_state, model_state):
model_size = model_state.get("model_size", "14B")
model_type = "reasoning" if thinking_state.get("enable_thinking", False) else "instruct"
model_name = MINISTRAL_MODELS[model_size][model_type]
return gr.update(value=model_name)
thinking_btn_state.change(fn=apply_thinking_style, inputs=[thinking_btn_state], outputs=[thinking_btn])
thinking_btn_state.change(fn=update_model_display, inputs=[thinking_btn_state, model_selector_state], outputs=[model_display])
thinking_btn.click(fn=toggle_thinking, inputs=[thinking_btn_state], outputs=[thinking_btn_state])
model_selector.change(fn=update_model_size, inputs=[model_selector, model_selector_state], outputs=[model_selector_state])
model_selector_state.change(fn=update_model_display, inputs=[thinking_btn_state, model_selector_state], outputs=[model_display])
if save_history:
browser_state = gr.BrowserState({"conversation_contexts": {}, "conversations": []}, storage_key="ministral_demo_storage")
state.change(fn=Gradio_Events.update_browser_state, inputs=[state], outputs=[browser_state])
demo.load(fn=Gradio_Events.apply_browser_state, inputs=[browser_state, state], outputs=[conversations, state])
add_conversation_btn.click(fn=Gradio_Events.new_chat, inputs=[thinking_btn_state, model_selector_state, state], outputs=[conversations, chatbot, thinking_btn_state, model_selector, state])
conversations.active_change(fn=Gradio_Events.select_conversation, inputs=[thinking_btn_state, model_selector_state, state], outputs=[conversations, chatbot, thinking_btn_state, model_selector, state])
conversations.menu_click(fn=Gradio_Events.click_conversation_menu, inputs=[state], outputs=[conversations, chatbot, state])
chatbot.welcome_prompt_select(fn=Gradio_Events.apply_prompt, inputs=[input], outputs=[input])
chatbot.delete(fn=Gradio_Events.delete_message, inputs=[state], outputs=[state])
chatbot.edit(fn=Gradio_Events.edit_message, inputs=[state, chatbot], outputs=[state, chatbot])
regenerating_event = chatbot.retry(fn=Gradio_Events.regenerate_message, inputs=[thinking_btn_state, model_selector_state, state],
outputs=[input, clear_btn, conversation_delete_menu_item, add_conversation_btn, conversations, chatbot, state])
submit_event = input.submit(fn=Gradio_Events.add_message, inputs=[input, thinking_btn_state, model_selector_state, state],
outputs=[input, clear_btn, conversation_delete_menu_item, add_conversation_btn, conversations, chatbot, state])
input.cancel(fn=Gradio_Events.cancel, inputs=[state],
outputs=[input, conversation_delete_menu_item, clear_btn, conversations, add_conversation_btn, chatbot, state],
cancels=[submit_event, regenerating_event], queue=False)
clear_btn.click(fn=Gradio_Events.clear_conversation_history, inputs=[state], outputs=[chatbot, state])
if __name__ == "__main__":
demo.queue(default_concurrency_limit=100, max_size=100).launch(ssr_mode=False, max_threads=100, show_api=False)