Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- Dockerfile +3 -1
- app/main.py +34 -18
- app/model.py +41 -56
- app/schemas.py +1 -1
- requirements.txt +0 -1
- run.sh +5 -0
Dockerfile
CHANGED
|
@@ -6,7 +6,9 @@ ENV PYTHONUNBUFFERED=1 \
|
|
| 6 |
PYTHONDONTWRITEBYTECODE=1 \
|
| 7 |
HF_HOME=/tmp/.huggingface \
|
| 8 |
TRANSFORMERS_CACHE=/tmp/.cache/huggingface \
|
| 9 |
-
HF_HUB_CACHE=/tmp/.cache/huggingface/hub
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Install minimal system dependencies
|
| 12 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
|
|
| 6 |
PYTHONDONTWRITEBYTECODE=1 \
|
| 7 |
HF_HOME=/tmp/.huggingface \
|
| 8 |
TRANSFORMERS_CACHE=/tmp/.cache/huggingface \
|
| 9 |
+
HF_HUB_CACHE=/tmp/.cache/huggingface/hub \
|
| 10 |
+
OMP_NUM_THREADS=4 \
|
| 11 |
+
MKL_NUM_THREADS=4
|
| 12 |
|
| 13 |
# Install minimal system dependencies
|
| 14 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
app/main.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# app/main.py
|
| 2 |
"""
|
| 3 |
FastAPI application for serving Nanbeige4.1-3B model.
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
|
| 7 |
import asyncio
|
|
@@ -22,17 +22,17 @@ async def lifespan(app: FastAPI):
|
|
| 22 |
Loads model on startup to ensure it's ready for requests.
|
| 23 |
"""
|
| 24 |
# Startup: Load model
|
| 25 |
-
print("Loading model...")
|
| 26 |
load_model()
|
| 27 |
-
print("Model loaded successfully")
|
| 28 |
yield
|
| 29 |
-
# Shutdown: Cleanup
|
| 30 |
print("Shutting down...")
|
| 31 |
|
| 32 |
|
| 33 |
app = FastAPI(
|
| 34 |
-
title="Nanbeige4.1-3B API",
|
| 35 |
-
description="FastAPI wrapper for Nanbeige4.1-3B
|
| 36 |
version="1.0.0",
|
| 37 |
lifespan=lifespan
|
| 38 |
)
|
|
@@ -41,7 +41,12 @@ app = FastAPI(
|
|
| 41 |
@app.get("/")
|
| 42 |
async def health_check():
|
| 43 |
"""Health check endpoint."""
|
| 44 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
@app.post("/generate")
|
|
@@ -56,14 +61,21 @@ async def generate_text(request: GenerationRequest):
|
|
| 56 |
if request.stream:
|
| 57 |
# Streaming response
|
| 58 |
async def stream_generator():
|
| 59 |
-
# Run sync generator in thread pool to not block
|
| 60 |
loop = asyncio.get_event_loop()
|
| 61 |
-
sync_gen = generate_stream(
|
| 62 |
-
final_prompt,
|
| 63 |
-
temperature=request.temperature,
|
| 64 |
-
max_tokens=request.max_tokens
|
| 65 |
-
)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
for chunk in sync_gen:
|
| 68 |
if chunk:
|
| 69 |
# SSE format
|
|
@@ -80,10 +92,14 @@ async def generate_text(request: GenerationRequest):
|
|
| 80 |
}
|
| 81 |
)
|
| 82 |
else:
|
| 83 |
-
# Non-streaming response
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
)
|
| 89 |
return GenerationResponse(text=result)
|
|
|
|
| 1 |
# app/main.py
|
| 2 |
"""
|
| 3 |
FastAPI application for serving Nanbeige4.1-3B model.
|
| 4 |
+
CPU-ONLY optimized for Hugging Face Spaces (Docker).
|
| 5 |
"""
|
| 6 |
|
| 7 |
import asyncio
|
|
|
|
| 22 |
Loads model on startup to ensure it's ready for requests.
|
| 23 |
"""
|
| 24 |
# Startup: Load model
|
| 25 |
+
print("Loading model on CPU...")
|
| 26 |
load_model()
|
| 27 |
+
print("Model loaded successfully on CPU")
|
| 28 |
yield
|
| 29 |
+
# Shutdown: Cleanup
|
| 30 |
print("Shutting down...")
|
| 31 |
|
| 32 |
|
| 33 |
app = FastAPI(
|
| 34 |
+
title="Nanbeige4.1-3B API (CPU)",
|
| 35 |
+
description="FastAPI wrapper for Nanbeige4.1-3B - CPU Optimized",
|
| 36 |
version="1.0.0",
|
| 37 |
lifespan=lifespan
|
| 38 |
)
|
|
|
|
| 41 |
@app.get("/")
|
| 42 |
async def health_check():
|
| 43 |
"""Health check endpoint."""
|
| 44 |
+
return {
|
| 45 |
+
"status": "ok",
|
| 46 |
+
"model": "Nanbeige4.1-3B",
|
| 47 |
+
"device": "cpu",
|
| 48 |
+
"mode": "float32"
|
| 49 |
+
}
|
| 50 |
|
| 51 |
|
| 52 |
@app.post("/generate")
|
|
|
|
| 61 |
if request.stream:
|
| 62 |
# Streaming response
|
| 63 |
async def stream_generator():
|
| 64 |
+
# Run sync generator in thread pool to not block event loop
|
| 65 |
loop = asyncio.get_event_loop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# Use run_in_executor for CPU-bound operations
|
| 68 |
+
def sync_generator():
|
| 69 |
+
return generate_stream(
|
| 70 |
+
final_prompt,
|
| 71 |
+
temperature=request.temperature,
|
| 72 |
+
max_tokens=request.max_tokens
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Get the generator
|
| 76 |
+
sync_gen = await loop.run_in_executor(None, sync_generator)
|
| 77 |
+
|
| 78 |
+
# Iterate through chunks
|
| 79 |
for chunk in sync_gen:
|
| 80 |
if chunk:
|
| 81 |
# SSE format
|
|
|
|
| 92 |
}
|
| 93 |
)
|
| 94 |
else:
|
| 95 |
+
# Non-streaming response - run in executor to not block
|
| 96 |
+
loop = asyncio.get_event_loop()
|
| 97 |
+
result = await loop.run_in_executor(
|
| 98 |
+
None,
|
| 99 |
+
lambda: generate(
|
| 100 |
+
final_prompt,
|
| 101 |
+
temperature=request.temperature,
|
| 102 |
+
max_tokens=request.max_tokens
|
| 103 |
+
)
|
| 104 |
)
|
| 105 |
return GenerationResponse(text=result)
|
app/model.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
# app/model.py
|
| 2 |
"""
|
| 3 |
Model loading and inference utilities for Nanbeige/Nanbeige4.1-3B.
|
|
|
|
| 4 |
Implements singleton pattern to ensure model loads only once.
|
| 5 |
"""
|
| 6 |
|
|
@@ -9,35 +10,24 @@ import os
|
|
| 9 |
from typing import Generator, Optional
|
| 10 |
|
| 11 |
import torch
|
| 12 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 13 |
|
| 14 |
# Global singleton instances
|
| 15 |
_tokenizer: Optional[AutoTokenizer] = None
|
| 16 |
_model: Optional[AutoModelForCausalLM] = None
|
| 17 |
|
| 18 |
|
| 19 |
-
def get_quantization_config() -> Optional[BitsAndBytesConfig]:
|
| 20 |
-
"""
|
| 21 |
-
Configure 4-bit quantization for CPU memory efficiency.
|
| 22 |
-
Returns None if bitsandbytes is not available or on CPU.
|
| 23 |
-
"""
|
| 24 |
-
try:
|
| 25 |
-
# 4-bit quantization config for minimal memory footprint
|
| 26 |
-
return BitsAndBytesConfig(
|
| 27 |
-
load_in_4bit=True,
|
| 28 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 29 |
-
bnb_4bit_quant_type="nf4",
|
| 30 |
-
bnb_4bit_use_double_quant=True,
|
| 31 |
-
)
|
| 32 |
-
except Exception:
|
| 33 |
-
return None
|
| 34 |
-
|
| 35 |
-
|
| 36 |
def load_model() -> tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 37 |
"""
|
| 38 |
Load tokenizer and model with singleton pattern.
|
| 39 |
Loads only on first call, returns cached instances thereafter.
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
Returns:
|
| 42 |
Tuple of (tokenizer, model)
|
| 43 |
"""
|
|
@@ -55,32 +45,29 @@ def load_model() -> tuple[AutoTokenizer, AutoModelForCausalLM]:
|
|
| 55 |
trust_remote_code=True
|
| 56 |
)
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
"trust_remote_code": True,
|
| 63 |
-
"low_cpu_mem_usage": True,
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
# Try to use quantization if available, otherwise use standard loading
|
| 67 |
-
quant_config = get_quantization_config()
|
| 68 |
-
if quant_config is not None:
|
| 69 |
-
model_kwargs["quantization_config"] = quant_config
|
| 70 |
|
| 71 |
-
#
|
|
|
|
| 72 |
_model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
model_name,
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
-
#
|
|
|
|
|
|
|
|
|
|
| 78 |
_model.eval()
|
| 79 |
|
| 80 |
# Clear cache to free memory
|
| 81 |
gc.collect()
|
| 82 |
-
if torch.cuda.is_available():
|
| 83 |
-
torch.cuda.empty_cache()
|
| 84 |
|
| 85 |
return _tokenizer, _model
|
| 86 |
|
|
@@ -110,21 +97,10 @@ def generate_stream(
|
|
| 110 |
add_special_tokens=False
|
| 111 |
)
|
| 112 |
|
| 113 |
-
#
|
| 114 |
-
input_ids = inputs.input_ids
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
generation_kwargs = {
|
| 118 |
-
"input_ids": input_ids,
|
| 119 |
-
"max_new_tokens": max_tokens,
|
| 120 |
-
"temperature": temperature,
|
| 121 |
-
"top_p": 0.95,
|
| 122 |
-
"do_sample": True,
|
| 123 |
-
"pad_token_id": tokenizer.pad_token_id or tokenizer.eos_token_id,
|
| 124 |
-
"eos_token_id": tokenizer.eos_token_id,
|
| 125 |
-
}
|
| 126 |
-
|
| 127 |
-
# Stream generation using generate with streamer
|
| 128 |
from transformers import TextIteratorStreamer
|
| 129 |
from threading import Thread
|
| 130 |
|
|
@@ -133,16 +109,25 @@ def generate_stream(
|
|
| 133 |
skip_prompt=True,
|
| 134 |
skip_special_tokens=True
|
| 135 |
)
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
# Run generation in separate thread to enable streaming
|
| 139 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 140 |
thread.start()
|
| 141 |
|
| 142 |
-
generated_text = ""
|
| 143 |
for text in streamer:
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
thread.join()
|
| 148 |
|
|
@@ -175,9 +160,9 @@ def generate(
|
|
| 175 |
add_special_tokens=False
|
| 176 |
)
|
| 177 |
|
| 178 |
-
input_ids = inputs.input_ids
|
| 179 |
|
| 180 |
-
# Generate
|
| 181 |
with torch.no_grad():
|
| 182 |
output_ids = model.generate(
|
| 183 |
input_ids,
|
|
@@ -185,7 +170,7 @@ def generate(
|
|
| 185 |
temperature=temperature,
|
| 186 |
top_p=0.95,
|
| 187 |
do_sample=True,
|
| 188 |
-
pad_token_id=tokenizer.pad_token_id
|
| 189 |
eos_token_id=tokenizer.eos_token_id,
|
| 190 |
)
|
| 191 |
|
|
|
|
| 1 |
# app/model.py
|
| 2 |
"""
|
| 3 |
Model loading and inference utilities for Nanbeige/Nanbeige4.1-3B.
|
| 4 |
+
CPU-optimized implementation - NO GPU/CUDA code.
|
| 5 |
Implements singleton pattern to ensure model loads only once.
|
| 6 |
"""
|
| 7 |
|
|
|
|
| 10 |
from typing import Generator, Optional
|
| 11 |
|
| 12 |
import torch
|
| 13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 14 |
|
| 15 |
# Global singleton instances
|
| 16 |
_tokenizer: Optional[AutoTokenizer] = None
|
| 17 |
_model: Optional[AutoModelForCausalLM] = None
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def load_model() -> tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 21 |
"""
|
| 22 |
Load tokenizer and model with singleton pattern.
|
| 23 |
Loads only on first call, returns cached instances thereafter.
|
| 24 |
|
| 25 |
+
CPU Optimization Notes:
|
| 26 |
+
- Use torch.float32 (float16 is 7x slower on CPU)
|
| 27 |
+
- low_cpu_mem_usage=True prevents memory spikes
|
| 28 |
+
- No device_map (CPU pe auto mat use karna)
|
| 29 |
+
- trust_remote_code=True required for Nanbeige models
|
| 30 |
+
|
| 31 |
Returns:
|
| 32 |
Tuple of (tokenizer, model)
|
| 33 |
"""
|
|
|
|
| 45 |
trust_remote_code=True
|
| 46 |
)
|
| 47 |
|
| 48 |
+
# Set pad token if not present
|
| 49 |
+
if _tokenizer.pad_token is None:
|
| 50 |
+
_tokenizer.pad_token = _tokenizer.eos_token
|
| 51 |
+
_tokenizer.pad_token_id = _tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# CPU-optimized model loading
|
| 54 |
+
# IMPORTANT: Use float32, NOT float16 (float16 is extremely slow on CPU)
|
| 55 |
_model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
model_name,
|
| 57 |
+
torch_dtype=torch.float32, # CPU pe float32 best hai
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
low_cpu_mem_usage=True, # Memory optimization
|
| 60 |
+
device_map=None, # CPU pe explicit None rakho
|
| 61 |
)
|
| 62 |
|
| 63 |
+
# Explicitly set to CPU (redundant but safe)
|
| 64 |
+
_model = _model.to("cpu")
|
| 65 |
+
|
| 66 |
+
# Evaluation mode for inference
|
| 67 |
_model.eval()
|
| 68 |
|
| 69 |
# Clear cache to free memory
|
| 70 |
gc.collect()
|
|
|
|
|
|
|
| 71 |
|
| 72 |
return _tokenizer, _model
|
| 73 |
|
|
|
|
| 97 |
add_special_tokens=False
|
| 98 |
)
|
| 99 |
|
| 100 |
+
# Keep on CPU
|
| 101 |
+
input_ids = inputs.input_ids
|
| 102 |
|
| 103 |
+
# Stream generation using TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
from transformers import TextIteratorStreamer
|
| 105 |
from threading import Thread
|
| 106 |
|
|
|
|
| 109 |
skip_prompt=True,
|
| 110 |
skip_special_tokens=True
|
| 111 |
)
|
| 112 |
+
|
| 113 |
+
generation_kwargs = {
|
| 114 |
+
"input_ids": input_ids,
|
| 115 |
+
"max_new_tokens": max_tokens,
|
| 116 |
+
"temperature": temperature,
|
| 117 |
+
"top_p": 0.95,
|
| 118 |
+
"do_sample": True,
|
| 119 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 120 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 121 |
+
"streamer": streamer,
|
| 122 |
+
}
|
| 123 |
|
| 124 |
# Run generation in separate thread to enable streaming
|
| 125 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 126 |
thread.start()
|
| 127 |
|
|
|
|
| 128 |
for text in streamer:
|
| 129 |
+
if text:
|
| 130 |
+
yield text
|
| 131 |
|
| 132 |
thread.join()
|
| 133 |
|
|
|
|
| 160 |
add_special_tokens=False
|
| 161 |
)
|
| 162 |
|
| 163 |
+
input_ids = inputs.input_ids
|
| 164 |
|
| 165 |
+
# Generate with no_grad for memory efficiency
|
| 166 |
with torch.no_grad():
|
| 167 |
output_ids = model.generate(
|
| 168 |
input_ids,
|
|
|
|
| 170 |
temperature=temperature,
|
| 171 |
top_p=0.95,
|
| 172 |
do_sample=True,
|
| 173 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 174 |
eos_token_id=tokenizer.eos_token_id,
|
| 175 |
)
|
| 176 |
|
app/schemas.py
CHANGED
|
@@ -23,7 +23,7 @@ class GenerationRequest(BaseModel):
|
|
| 23 |
max_tokens: int = Field(
|
| 24 |
default=200,
|
| 25 |
ge=1,
|
| 26 |
-
le=
|
| 27 |
description="Maximum tokens to generate"
|
| 28 |
)
|
| 29 |
stream: bool = Field(
|
|
|
|
| 23 |
max_tokens: int = Field(
|
| 24 |
default=200,
|
| 25 |
ge=1,
|
| 26 |
+
le=512,
|
| 27 |
description="Maximum tokens to generate"
|
| 28 |
)
|
| 29 |
stream: bool = Field(
|
requirements.txt
CHANGED
|
@@ -6,6 +6,5 @@ transformers==4.46.0
|
|
| 6 |
torch==2.5.0
|
| 7 |
accelerate==1.0.0
|
| 8 |
sentencepiece==0.2.0
|
| 9 |
-
bitsandbytes==0.44.0
|
| 10 |
huggingface-hub==0.26.0
|
| 11 |
python-multipart==0.0.12
|
|
|
|
| 6 |
torch==2.5.0
|
| 7 |
accelerate==1.0.0
|
| 8 |
sentencepiece==0.2.0
|
|
|
|
| 9 |
huggingface-hub==0.26.0
|
| 10 |
python-multipart==0.0.12
|
run.sh
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
# run.sh
|
| 3 |
# Production startup script for uvicorn server
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
exec uvicorn app.main:app \
|
| 6 |
--host 0.0.0.0 \
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
# run.sh
|
| 3 |
# Production startup script for uvicorn server
|
| 4 |
+
# Optimized for CPU-only Hugging Face Spaces
|
| 5 |
+
|
| 6 |
+
export OMP_NUM_THREADS=4
|
| 7 |
+
export MKL_NUM_THREADS=4
|
| 8 |
+
export TRANSFORMERS_CACHE=/tmp/.cache/huggingface
|
| 9 |
|
| 10 |
exec uvicorn app.main:app \
|
| 11 |
--host 0.0.0.0 \
|