Spaces:
Sleeping
Sleeping
File size: 27,612 Bytes
e0075a3 dc3a91a 90d32ed dc3a91a 75729d2 dc3a91a 75729d2 dc3a91a 75729d2 dc3a91a 75729d2 dc3a91a 75729d2 e0075a3 dc3a91a e0075a3 dc3a91a add1aec dc3a91a add1aec dc3a91a add1aec dc3a91a add1aec e0075a3 add1aec e0075a3 add1aec e0075a3 123d70b c4e05ba 123d70b e0075a3 123d70b e0075a3 123d70b 1879b51 123d70b e0075a3 123d70b e0075a3 123d70b 1879b51 e0075a3 add1aec e0075a3 1879b51 e0075a3 123d70b e0075a3 123d70b e0075a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
"""
VitalSync AI - Intelligent Triage Assistant
Bridging the gap between symptoms and care.
Developed by Kunal Shaw
https://github.com/KUNALSHAWW
"""
from datasets import load_dataset
from IPython.display import clear_output
import pandas as pd
import re
from dotenv import load_dotenv
import os
from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
from langchain.llms import WatsonxLLM
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.milvus import Milvus
from langchain.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
import os
from pymilvus import Collection, utility
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
from towhee import pipe, ops
import numpy as np
from langchain_core.retrievers import BaseRetriever
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from pymilvus import Collection, utility
from towhee import pipe, ops
import numpy as np
from towhee.datacollection import DataCollection
from typing import List
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain_core.retrievers import BaseRetriever
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from fpdf import FPDF
import time
from datetime import datetime
print_full_prompt = False
# ═══════════════════════════════════════════════════════════════════════════════
# VITALSYNC AI - CONFIGURATION
# ═══════════════════════════════════════════════════════════════════════════════
VITALSYNC_CONFIG = {
"name": "VitalSync AI",
"version": "1.0.0",
"tagline": "Bridging the gap between symptoms and care",
"author": "Kunal Shaw",
"github": "https://github.com/KUNALSHAWW"
}
# ═══════════════════════════════════════════════════════════════════════════════
# SAFETY TRIAGE LAYER - Emergency Detection System
# ═══════════════════════════════════════════════════════════════════════════════
EMERGENCY_KEYWORDS = [
"suicide", "kill myself", "want to die", "end my life",
"heart attack", "chest pain", "crushing chest",
"can't breathe", "cannot breathe", "difficulty breathing", "choking",
"unconscious", "passed out", "fainted",
"stroke", "face drooping", "arm weakness", "speech difficulty",
"severe bleeding", "heavy bleeding",
"overdose", "poisoning",
"seizure", "convulsions"
]
EMERGENCY_RESPONSE = """
⚠️ **CRITICAL HEALTH ALERT** ⚠️
Based on what you've described, this may be a **medical emergency**.
**🚨 PLEASE TAKE IMMEDIATE ACTION:**
1. **Call Emergency Services NOW:**
- 🇺🇸 USA: **911**
- 🇮🇳 India: **112** or **102**
- 🇬🇧 UK: **999**
- 🇪🇺 Europe: **112**
2. **Do not wait** for AI assistance in emergencies
3. **Stay calm** and follow dispatcher instructions
4. If someone is with you, **ask them to help**
---
*VitalSync AI cannot provide emergency medical care. Your safety is the priority.*
**This conversation has been flagged for safety. Please seek immediate professional help.**
"""
def check_emergency_triage(message: str) -> bool:
"""
Safety Triage Layer: Detects emergency medical situations.
Returns True if an emergency keyword is detected.
"""
message_lower = message.lower()
for keyword in EMERGENCY_KEYWORDS:
if keyword in message_lower:
return True
return False
# ═══════════════════════════════════════════════════════════════════════════════
# PDF REPORT GENERATION - Consultation Export Feature
# ═══════════════════════════════════════════════════════════════════════════════
class ConsultationReportPDF(FPDF):
"""Custom PDF class for VitalSync consultation reports."""
def header(self):
self.set_font('Arial', 'B', 16)
self.set_text_color(0, 128, 128) # Teal color
self.cell(0, 10, 'VitalSync AI - Consultation Report', 0, 1, 'C')
self.set_font('Arial', 'I', 10)
self.set_text_color(128, 128, 128)
self.cell(0, 5, 'Intelligent Triage Assistant', 0, 1, 'C')
self.ln(5)
self.set_draw_color(0, 128, 128)
self.line(10, self.get_y(), 200, self.get_y())
self.ln(10)
def footer(self):
self.set_y(-30)
self.set_draw_color(0, 128, 128)
self.line(10, self.get_y(), 200, self.get_y())
self.ln(5)
self.set_font('Arial', 'I', 8)
self.set_text_color(128, 128, 128)
self.multi_cell(0, 4,
'DISCLAIMER: This report is generated by VitalSync AI for informational purposes only. '
'It does not constitute medical advice, diagnosis, or treatment. Always consult a qualified '
'healthcare professional for medical concerns.', 0, 'C')
self.cell(0, 4, f'Page {self.page_no()}', 0, 0, 'C')
def generate_consultation_report(chat_history) -> str:
"""
Generates a PDF report from the chat history.
Returns the filename of the generated PDF.
"""
if not chat_history or len(chat_history) == 0:
return None
pdf = ConsultationReportPDF()
pdf.add_page()
# Report metadata
pdf.set_font('Arial', 'B', 12)
pdf.set_text_color(0, 0, 0)
pdf.cell(0, 8, f'Report Generated: {datetime.now().strftime("%B %d, %Y at %I:%M %p")}', 0, 1)
pdf.cell(0, 8, f'Session ID: VS-{int(time.time())}', 0, 1)
pdf.ln(10)
# Conversation transcript
pdf.set_font('Arial', 'B', 14)
pdf.set_text_color(0, 128, 128)
pdf.cell(0, 10, 'Consultation Transcript', 0, 1)
pdf.ln(5)
for i, (user_msg, bot_msg) in enumerate(chat_history, 1):
# Patient message
pdf.set_font('Arial', 'B', 11)
pdf.set_text_color(70, 130, 180) # Steel blue
pdf.cell(0, 8, f'Patient (Message {i}):', 0, 1)
pdf.set_font('Arial', '', 10)
pdf.set_text_color(0, 0, 0)
safe_user_msg = user_msg.encode('latin-1', 'replace').decode('latin-1')
pdf.multi_cell(0, 6, safe_user_msg)
pdf.ln(3)
# AI Response
pdf.set_font('Arial', 'B', 11)
pdf.set_text_color(0, 128, 128) # Teal
pdf.cell(0, 8, f'VitalSync AI Response:', 0, 1)
pdf.set_font('Arial', '', 10)
pdf.set_text_color(0, 0, 0)
safe_bot_msg = bot_msg.encode('latin-1', 'replace').decode('latin-1')
safe_bot_msg = re.sub(r'\*\*(.+?)\*\*', r'\1', safe_bot_msg)
safe_bot_msg = re.sub(r'\*(.+?)\*', r'\1', safe_bot_msg)
pdf.multi_cell(0, 6, safe_bot_msg)
pdf.ln(8)
filename = f"vitalsync_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
pdf.output(filename)
return filename
# ═══════════════════════════════════════════════════════════════════════════════
# DATA & MODEL SETUP (Original Logic - Preserved)
# ═══════════════════════════════════════════════════════════════════════════════
## Step 1 Dataset Retrieving
dataset = load_dataset("ruslanmv/ai-medical-chatbot")
clear_output()
train_data = dataset["train"]
#For this demo let us choose the first 1000 dialogues
df = pd.DataFrame(train_data[:1000])
#df = df[["Patient", "Doctor"]].rename(columns={"Patient": "question", "Doctor": "answer"})
df = df[["Description", "Doctor"]].rename(columns={"Description": "question", "Doctor": "answer"})
# Add the 'ID' column as the first column
df.insert(0, 'id', df.index)
# Reset the index and drop the previous index column
df = df.reset_index(drop=True)
# Clean the 'question' and 'answer' columns
df['question'] = df['question'].apply(lambda x: re.sub(r'\s+', ' ', x.strip()))
df['answer'] = df['answer'].apply(lambda x: re.sub(r'\s+', ' ', x.strip()))
df['question'] = df['question'].str.replace('^Q.', '', regex=True)
# Assuming your DataFrame is named df
max_length = 500 # Due to our enbeeding model does not allow long strings
df['question'] = df['question'].str.slice(0, max_length)
#To use the dataset to get answers, let's first define the dictionary:
#- `id_answer`: a dictionary of id and corresponding answer
id_answer = df.set_index('id')['answer'].to_dict()
load_dotenv()
## Step 2 Milvus connection
COLLECTION_NAME='qa_medical'
load_dotenv()
# Configuration for Milvus/Zilliz
milvus_uri = os.environ.get("MILVUS_URI")
milvus_token = os.environ.get("MILVUS_TOKEN")
host_milvus = os.environ.get("REMOTE_SERVER", '127.0.0.1')
# Connect to Zilliz Cloud (if URI/Token provided) or Self-Hosted Milvus
if milvus_uri and milvus_token:
print(f"Connecting to Zilliz Cloud: {milvus_uri}")
connections.connect(alias="default", uri=milvus_uri, token=milvus_token)
else:
print(f"Connecting to Milvus Host: {host_milvus}")
connections.connect(host=host_milvus, port='19530')
# Check if collection exists, if not create and populate it
try:
# Zilliz Cloud sometimes raises an exception instead of returning False
has_col = utility.has_collection(COLLECTION_NAME)
except Exception as e:
print(f"Note: has_collection check failed ({str(e)}). Assuming collection does not exist.")
has_col = False
if not has_col:
print(f"Collection {COLLECTION_NAME} not found. Creating and populating...")
# Use MilvusClient for Zilliz Serverless (recommended approach)
from pymilvus import MilvusClient
if milvus_uri and milvus_token:
client = MilvusClient(uri=milvus_uri, token=milvus_token)
else:
client = MilvusClient(uri=f"http://{host_milvus}:19530")
# Create collection with MilvusClient (simpler API for serverless)
client.create_collection(
collection_name=COLLECTION_NAME,
dimension=768, # DPR embedding dimension
metric_type="IP",
auto_id=False,
id_type="int"
)
print(f"Collection {COLLECTION_NAME} created successfully.")
# 2. Generate Embeddings
print("Generating embeddings for initial data...")
embedding_pipe = (
pipe.input('question')
.map('question', 'vec', lambda x: x[:500])
.map('vec', 'vec', ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))
.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0))
.output('vec')
)
# Process and collect data
data_to_insert = []
print("Processing embeddings (this may take a few minutes)...")
for idx, q in enumerate(df['question']):
res = embedding_pipe(q)
vec = res.get()[0]
data_to_insert.append({
"id": int(df['id'].iloc[idx]),
"vector": vec.tolist()
})
if (idx + 1) % 100 == 0:
print(f"Processed {idx + 1}/{len(df)} embeddings...")
# 3. Insert Data
print("Inserting data into Zilliz...")
client.insert(collection_name=COLLECTION_NAME, data=data_to_insert)
print("Collection setup complete.")
# Close the client connection
client.close()
# Reconnect with standard connection for the rest of the app
connections.disconnect("default")
if milvus_uri and milvus_token:
connections.connect(alias="default", uri=milvus_uri, token=milvus_token)
else:
connections.connect(host=host_milvus, port='19530')
collection = Collection(COLLECTION_NAME)
collection.load()
utility.load_state(COLLECTION_NAME)
utility.loading_progress(COLLECTION_NAME)
max_input_length = 500 # Maximum length allowed by the model
# Initialize MilvusClient for search (compatible with Zilliz Serverless)
from pymilvus import MilvusClient as SearchClient
if milvus_uri and milvus_token:
search_client = SearchClient(uri=milvus_uri, token=milvus_token)
else:
search_client = SearchClient(uri=f"http://{host_milvus}:19530")
# Initialize embedding pipeline (without Milvus search - we'll do that separately)
embedding_pipe = (
pipe.input('question')
.map('question', 'vec', lambda x: x[:max_input_length])
.map('vec', 'vec', ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))
.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0))
.output('vec')
)
def search_similar_questions(question: str) -> list:
"""Search for similar questions using MilvusClient directly (Zilliz Serverless compatible)."""
# Get embedding for the question
result = embedding_pipe(question)
query_vector = result.get()[0].tolist()
# Search using MilvusClient
search_results = search_client.search(
collection_name=COLLECTION_NAME,
data=[query_vector],
limit=1,
output_fields=["id"]
)
# Extract answers from results
answers = []
for hits in search_results:
for hit in hits:
doc_id = hit['id']
if doc_id in id_answer:
answers.append(id_answer[doc_id])
return answers
# Step 3 - Custom LLM
from openai import OpenAI
# Get model name from environment or use Groq's llama model (mixtral was deprecated)
LLM_MODEL = os.environ.get("LLM_MODEL", "llama-3.1-8b-instant")
def generate_stream(prompt, model=None):
# Use environment variables for flexibility (OpenAI, Groq, or Custom HF Endpoint)
base_url = os.environ.get("LLM_BASE_URL", "https://api.groq.com/openai/v1")
api_key = os.environ.get("LLM_API_KEY")
if not api_key:
print("ERROR: LLM_API_KEY not set!")
return None
if model is None:
model = LLM_MODEL
print(f"Using LLM: {model} at {base_url}")
client = OpenAI(base_url=base_url, api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": """You are VitalSync AI, an expert medical health assistant developed by Kunal Shaw. Your role is to provide detailed, accurate, and helpful health information.
Guidelines:
- Provide comprehensive and medically accurate responses
- Structure your answers clearly with relevant details
- Include possible causes, symptoms, and general recommendations when appropriate
- Always recommend consulting a healthcare professional for proper diagnosis and treatment
- Be empathetic and supportive in your tone
- If you're uncertain about something, acknowledge it honestly
- Never provide specific medication dosages or treatment plans - always defer to medical professionals"""
},
{
"role": "user",
"content": prompt,
}
],
stream=True,
temperature=0.7,
max_tokens=1024,
)
return response
# Zephyr formatter
def format_prompt_zephyr(message, history, system_message):
prompt = (
"<|system|>\n" + system_message + "</s>"
)
for user_prompt, bot_response in history:
prompt += f"<|user|>\n{user_prompt}</s>"
prompt += f"<|assistant|>\n{bot_response}</s>"
if message=="":
message="Hello"
prompt += f"<|user|>\n{message}</s>"
prompt += f"<|assistant|>"
#print(prompt)
return prompt
# Step 4 Langchain Definitions
class CustomRetrieverLang(BaseRetriever):
def get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
# Perform the encoding and retrieval for a specific question
answers = search_similar_questions(query)
answer_string = ' '.join(answers) if answers else "No relevant information found."
return [Document(page_content=answer_string)]
# Ensure correct VectorStoreRetriever usage
retriever = CustomRetrieverLang()
def full_prompt(
question,
history=""
):
context=[]
# Get the retrieved context
docs = retriever.get_relevant_documents(question)
print("Retrieved context:")
for doc in docs:
context.append(doc.page_content)
context=" ".join(context)
#print(context)
default_system_message = f"""
You are VitalSync AI, an expert health assistant. Please follow these guidelines:
1. **Provide Detailed Responses**: Give comprehensive answers that address the user's health concerns thoroughly.
2. **Be Medically Accurate**: Base your responses on the provided medical context and established medical knowledge.
3. **Structure Your Answer**:
- Start with a direct answer to the question
- Explain relevant causes or factors
- Provide helpful recommendations or next steps
- Mention when professional medical consultation is advised
4. **Be Empathetic**: Show understanding and compassion for health concerns.
5. **Safety First**: Always recommend consulting a healthcare provider for proper diagnosis and treatment.
6. **Use the Context**: Reference the following medical context to provide accurate information:
Medical Context: {context}
Remember: You are here to help users understand their health concerns better, not to replace professional medical advice.
"""
system_message = os.environ.get("SYSTEM_MESSAGE", default_system_message)
formatted_prompt = format_prompt_zephyr(question, history, system_message=system_message)
print(formatted_prompt)
return formatted_prompt
def custom_llm(
question,
history="",
temperature=0.8,
max_tokens=256,
top_p=0.95,
stop=None,
):
formatted_prompt = full_prompt(question, history)
try:
print("LLM Input:", formatted_prompt)
output = ""
stream = generate_stream(formatted_prompt)
# Check if stream is None before iterating
if stream is None:
print("No response generated.")
return
for response in stream:
character = response.choices[0].delta.content
# Handle empty character and stop reason
if character is not None:
print(character, end="", flush=True)
output += character
elif response.choices[0].finish_reason == "stop":
print("Generation stopped.")
break # or return output depending on your needs
else:
pass
if "<|user|>" in character:
# end of context
print("----end of context----")
return
#print(output)
#yield output
except Exception as e:
error_msg = str(e)
print(f"LLM ERROR: {error_msg}")
if "Too Many Requests" in error_msg or "rate_limit" in error_msg.lower():
output = "I'm receiving too many requests right now. Please try again in a moment."
elif "authentication" in error_msg.lower() or "api_key" in error_msg.lower() or "401" in error_msg:
output = "There's an authentication issue with the AI service. Please check the API configuration."
elif "model" in error_msg.lower() and "not found" in error_msg.lower():
output = f"The AI model is not available. Error: {error_msg}"
else:
output = f"I encountered an error while processing your request. Technical details: {error_msg[:200]}"
return output
from langchain.llms import BaseLLM
from langchain_core.language_models.llms import LLMResult
class MyCustomLLM(BaseLLM):
def _generate(
self,
prompt: str,
*,
temperature: float = 0.7,
max_tokens: int = 256,
top_p: float = 0.95,
stop: list[str] = None,
**kwargs,
) -> LLMResult: # Change return type to LLMResult
response_text = custom_llm(
question=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
stop=stop,
)
# Convert the response text to LLMResult format
response = LLMResult(generations=[[{'text': response_text}]])
return response
def _llm_type(self) -> str:
return "VitalSync LLM"
# Create a Langchain with your custom LLM
rag_chain = MyCustomLLM()
# Invoke the chain with your question
question = "I have started to get lots of acne on my face, particularly on my forehead what can I do"
print(rag_chain.invoke(question))
# ═══════════════════════════════════════════════════════════════════════════════
# VITALSYNC CHAT FUNCTIONS
# ═══════════════════════════════════════════════════════════════════════════════
import gradio as gr
def vitalsync_chat(message, history):
"""
Main chat function with integrated Safety Triage Layer.
"""
history = history or []
if isinstance(history, str):
history = []
# SAFETY TRIAGE CHECK - Intercept emergencies before AI processing
if check_emergency_triage(message):
return EMERGENCY_RESPONSE
# Normal AI processing
response = rag_chain.invoke(message)
return response
def chat(message, history):
history = history or []
if isinstance(history, str):
history = [] # Reset history to empty list if it's a string
response = vitalsync_chat(message, history)
history.append((message, response))
return history, response
def chat_v1(message, history):
response = vitalsync_chat(message, history)
return (response)
collection.load()
# ═══════════════════════════════════════════════════════════════════════════════
# GRADIO INTERFACE - VitalSync AI Dashboard
# ═══════════════════════════════════════════════════════════════════════════════
# Function to read CSS from file (improved readability)
def read_css_from_file(filename):
with open(filename, "r") as f:
return f.read()
# Read CSS from file
css = read_css_from_file("style.css")
# VitalSync Welcome Message
welcome_message = '''
<div id="content_align" style="text-align: center;">
<span style="color: #20B2AA; font-size: 36px; font-weight: bold;">
🏥 VitalSync AI
</span>
<br>
<span style="color: #fff; font-size: 18px; font-weight: bold;">
Intelligent Triage Assistant
</span>
<br>
<span style="color: #87CEEB; font-size: 14px; font-style: italic;">
Bridging the gap between symptoms and care
</span>
<br><br>
<span style="color: #B0C4DE; font-size: 13px;">
Developed by <a href="https://github.com/KUNALSHAWW" style="color: #20B2AA;">Kunal Shaw</a>
</span>
</div>
'''
# Greeting message for initial interaction
GREETING_MESSAGE = """Hello! 👋 I'm **VitalSync AI**, your intelligent triage assistant.
I can help you:
- 🔍 Understand your symptoms
- 📋 Provide general health information
- 🏥 Guide you on when to seek professional care
**How are you feeling today?** Please describe your symptoms or health concerns."""
# Creating Gradio interface with VitalSync branding
with gr.Blocks(css=css, title="VitalSync AI - Intelligent Triage Assistant") as interface:
gr.Markdown(welcome_message) # Display the welcome message
# Input and output elements
with gr.Row():
with gr.Column(scale=4):
text_prompt = gr.Textbox(
label="Describe Your Symptoms",
placeholder="Example: I've been having headaches and feeling tired for the past few days...",
lines=3
)
with gr.Column(scale=1):
generate_button = gr.Button("🔍 Analyze Symptoms", variant="primary", size="lg")
with gr.Row():
answer_output = gr.Textbox(
type="text",
label="VitalSync AI Assessment",
lines=8,
value=GREETING_MESSAGE
)
# PDF Export Feature
with gr.Row():
with gr.Column(scale=3):
chat_history_state = gr.State([])
with gr.Column(scale=1):
download_btn = gr.Button("📄 Download Report", variant="secondary")
with gr.Column(scale=1):
report_file = gr.File(label="Your Consultation Report", visible=True)
# Disclaimer Footer
gr.Markdown("""
---
<div style="text-align: center; padding: 15px; background-color: rgba(32, 178, 170, 0.1); border-radius: 10px; margin-top: 20px;">
<span style="color: #FFD700; font-size: 12px;">⚠️ <strong>Important Disclaimer:</strong></span>
<br>
<span style="color: #B0C4DE; font-size: 11px;">
VitalSync AI is for <strong>informational purposes only</strong> and does not replace professional medical advice, diagnosis, or treatment.
<br>Always consult a qualified healthcare provider for medical concerns. In case of emergency, call your local emergency services immediately.
</span>
</div>
""")
# Event handlers
def process_and_store(message, history):
response = vitalsync_chat(message, history)
if history is None:
history = []
history.append((message, response))
return response, history
def create_report(history):
if not history or len(history) == 0:
return None
filename = generate_consultation_report(history)
return filename
generate_button.click(
process_and_store,
inputs=[text_prompt, chat_history_state],
outputs=[answer_output, chat_history_state]
)
download_btn.click(
create_report,
inputs=[chat_history_state],
outputs=[report_file]
)
# Launch the VitalSync AI application
if __name__ == "__main__":
interface.launch(server_name="0.0.0.0", server_port=7860) |