ladybug11's picture
fixx error
9246d27
import os
import random
import base64
import tempfile
from typing import Tuple, List, Dict, Any
import gradio as gr
import requests
from openai import OpenAI
from smolagents import CodeAgent, MCPClient, tool
from huggingface_hub import InferenceClient
from elevenlabs import ElevenLabs, VoiceSettings
from quote_generator_gemini import HybridQuoteGenerator
# =============================================================================
# GLOBAL CLIENTS / CONFIG
# =============================================================================
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
# ElevenLabs client (optional)
try:
elevenlabs_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
except Exception as e:
print(f"ElevenLabs init warning: {e}")
elevenlabs_client = None
# Hybrid quote generator (Gemini primary, OpenAI fallback)
hybrid_quote_generator = HybridQuoteGenerator(
gemini_key=os.getenv("GEMINI_API_KEY"),
openai_client=openai_client,
)
# Initialize MCP Client (optional, not critical if missing)
try:
mcp_client = MCPClient("https://abidlabs-mcp-tools.hf.space")
mcp_enabled = True
except Exception as e:
print(f"MCP initialization warning: {e}")
mcp_enabled = False
# Modal endpoint for fast video rendering
MODAL_ENDPOINT_URL = os.getenv("MODAL_ENDPOINT_URL")
# =============================================================================
# CONTEXT ENGINEERING: PERSONA + TRENDS
# =============================================================================
def get_persona_instruction(persona: str) -> str:
persona = (persona or "").lower()
if persona == "coach":
return (
"High-energy, practical, direct. Sounds like a smart, encouraging coach "
"speaking to a friend who is capable of more."
)
if persona == "philosopher":
return (
"Calm, reflective, almost meditative. Uses simple language to point to "
"deeper truths without sounding mystical."
)
if persona == "poet":
return (
"Soft, lyrical, imagery-driven. Uses metaphor but stays clear and grounded "
"enough for TikTok viewers."
)
if persona == "mentor":
return (
"Warm, grounded, seasoned. Feels like someone older and wiser sharing lessons "
"learned the hard way, without lecturing."
)
return "Neutral, conversational, and clear."
def get_trend_insights(niche: str) -> Dict[str, Any]:
niche = niche or "Motivation"
trends: Dict[str, Dict[str, Any]] = {
"Motivation": {
"label": "soft life vs discipline era",
"summary": (
"Motivational content leans into 'soft life' aesthetics while still "
"talking about discipline, systems, and quiet consistency."
),
"topics": [
{
"topic": "Soft Life Affirmations",
"hook": "Unlock your soft life with one small decision you can actually keep today.",
},
{
"topic": "Discipline Era Strategies",
"hook": "3 ‘discipline era’ habits that don’t require waking up at 4am.",
},
{
"topic": "Reset Routine Hacks",
"hook": "A 10-minute reset to get you unstuck.",
},
],
},
"Business/Entrepreneurship": {
"label": "one-person brands & slow growth",
"summary": (
"Founders are tired of hustle theatre. Trending content focuses on "
"one-person brands, slow compounding, and honest behind-the-scenes."
),
"topics": [
{
"topic": "Build in Public Moments",
"hook": "Here’s the part of building nobody shows—but everyone feels.",
},
{
"topic": "Tiny Experiments",
"hook": "One small experiment you can run this week instead of a 5-year plan.",
},
],
},
"Fitness": {
"label": "sustainable glow-up",
"summary": (
"Fitness trends lean toward sustainable glow-ups: walking, strength, "
"and realistic body expectations."
),
"topics": [
{
"topic": "Gentle Discipline Workouts",
"hook": "A routine for the days you ‘don’t feel like it’ but still care.",
},
{
"topic": "Slow Glow-Up",
"hook": "The quiet glow-up that happens when you stop quitting.",
},
],
},
"Mindfulness": {
"label": "nervous system & soft resets",
"summary": (
"Mindfulness content is shifting toward nervous system regulation, tiny "
"resets, and practical grounding."
),
"topics": [
{
"topic": "Micro Resets",
"hook": "30-second resets to bring your mind back into your body.",
},
{
"topic": "Calm Start Routines",
"hook": "A 3-step morning that doesn’t require journaling for 2 hours.",
},
],
},
"Stoicism": {
"label": "quiet strength",
"summary": (
"Stoic content focuses on quiet strength, emotional regulation, and not "
"reacting to every notification, comment, or impulse."
),
"topics": [
{
"topic": "Reaction Discipline",
"hook": "You can’t control people—but you can control the pause before you answer.",
},
{
"topic": "Modern Stoic Moments",
"hook": "3 modern situations where being stoic actually helps.",
},
],
},
"Leadership": {
"label": "servant leadership & clarity",
"summary": (
"Leadership trends highlight servant leadership, psychological safety, "
"and simple, clear direction."
),
"topics": [
{
"topic": "Clarity Over Charisma",
"hook": "People don’t need a hero. They need one clear next step.",
},
{
"topic": "Leader as Mirror",
"hook": "What your team hides from you tells you who you are as a leader.",
},
],
},
"Love & Relationships": {
"label": "self-worth & secure attachment",
"summary": (
"Relationship content leans into self-worth, boundaries, and secure "
"attachment—not just romance but emotional safety."
),
"topics": [
{
"topic": "Soft Boundaries",
"hook": "Kind doesn’t mean available for everything. Here’s how to say no softly.",
},
{
"topic": "Choosing Safe People",
"hook": "3 green flags that matter more than butterflies.",
},
],
},
}
default = {
"label": "modern glow-up & gentle discipline",
"summary": (
"Short-form content leans into gentle discipline, realistic routines, "
"and soft glow-ups instead of extreme hustle."
),
"topics": [
{
"topic": "Glow Up Checklist",
"hook": "A realistic glow-up checklist you can actually follow this month.",
}
],
}
return trends.get(niche, default)
# =============================================================================
# CAPTION + HASHTAG GENERATION (non-MCP version)
# =============================================================================
def generate_caption_and_hashtags(niche: str, persona: str, trend_label: str) -> str:
"""
Generate a posting-ready caption, hashtags, and a tiny posting tip
based on niche + persona + trend theme.
Args:
niche (str): Selected content niche (e.g. Motivation, Fitness).
persona (str): Selected persona (Coach, Philosopher, etc.).
trend_label (str): Short label describing the current trend theme.
Returns:
str: Formatted block containing caption, hashtags, and posting tip.
"""
persona_instruction = get_persona_instruction(persona)
prompt = f"""
Generate a social-media-ready caption and hashtags for a short vertical quote video.
Niche: {niche}
Persona / tone: {persona} ({persona_instruction})
Trend theme: {trend_label}
Requirements:
- CAPTION: 1–2 sentences max
* Should sound natural, like a human writing for TikTok/Instagram
* Should NOT repeat the quote text word-for-word
* Can reference feelings, situation, or transformation implied by the quote
- HASHTAGS:
* 8–12 hashtags total
* Mix of trending-style tags and niche / long-tail tags
* Use lowercase, no spaces (standard hashtag conventions)
* No banned, misleading, or spammy tags
- POSTING TIP:
* 1 short sentence with a practical suggestion (sound choice, posting time, or CTA)
Format the answer EXACTLY like this:
CAPTION:
<caption text>
HASHTAGS:
#tag1 #tag2 #tag3 ...
POSTING TIP:
<one short tip>
"""
try:
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
max_tokens=220,
temperature=0.8,
)
text = completion.choices[0].message.content.strip()
return text
except Exception as e:
return f"Error generating caption/hashtags: {str(e)}"
# =============================================================================
# TOOLS
# =============================================================================
@tool
def generate_quote_tool(niche: str, style: str, persona: str) -> str:
"""
Generate a powerful, non-repetitive quote using Gemini with variety tracking
and persona-aware tone.
Args:
niche (str): High-level niche/category (e.g. Motivation, Fitness, Mindfulness).
style (str): Visual style for the video (e.g. Cinematic, Nature, Urban, Minimal, Abstract).
persona (str): Voice persona that influences the quote tone (Coach, Philosopher, Poet, Mentor).
Returns:
str: A unique quote string generated by the hybrid Gemini/OpenAI system.
"""
persona_instruction = get_persona_instruction(persona)
combined_style = f"{style} | persona={persona} | tone={persona_instruction}"
result = hybrid_quote_generator.generate_quote(
niche=niche,
style=combined_style,
prefer_gemini=True,
)
if result["success"]:
quote = result["quote"]
source = result["source"]
if source == "gemini":
stats = result.get("stats", {})
print(
f"✨ Quote via Gemini – total stored: "
f"{stats.get('total_quotes_generated', 0)}"
)
else:
print("✨ Quote via OpenAI fallback")
return quote
error_msg = result.get("error", "Unknown error")
return f"Error generating quote: {error_msg}"
@tool
def search_pexels_video_tool(style: str, niche: str, trend_label: str = "") -> dict:
"""
Search and fetch a matching vertical video from Pexels based on style, niche,
and the current trend label.
Args:
style (str): Visual style for the background footage (e.g. Cinematic, Nature).
niche (str): Selected niche (Motivation, Business/Entrepreneurship, etc.).
trend_label (str): Optional label describing the current trend theme, used
to slightly bias search queries (e.g. "soft life", "discipline era").
Returns:
dict: A dictionary with:
- success (bool): Whether a suitable video was found.
- video_url (str or None): Direct URL to the chosen video file.
- search_query (str): The Pexels search query used.
- pexels_url (str or None): Public Pexels page for the chosen video.
- error (str, optional): Error message if success is False.
"""
base_queries = {
"Motivation": {
"Cinematic": ["running sunrise", "cliff sunrise", "city at dawn"],
"Nature": ["sunrise mountains", "ocean waves slow", "forest light"],
"Urban": ["city runner", "city skyline morning", "urban rooftops"],
"Minimal": ["minimal workspace", "single person silhouette", "clean wall light"],
"Abstract": ["light rays particles", "soft bokeh", "abstract motion"],
},
"Business/Entrepreneurship": {
"Cinematic": ["city office at night", "business skyline", "people working late"],
"Nature": ["plant growing time lapse", "river flow", "sunrise horizon"],
"Urban": ["co-working space", "modern office", "street view city"],
"Minimal": ["laptop desk minimal", "coffee notebook desk", "clean office"],
"Abstract": ["network connections", "digital grid", "data waves"],
},
"Fitness": {
"Cinematic": ["athlete training", "slow motion running", "gym shadows"],
"Nature": ["trail running", "hiking mountain", "beach workout"],
"Urban": ["city night run", "rooftop workout", "urban fitness"],
"Minimal": ["minimal gym", "single dumbbell on floor", "clean fitness studio"],
"Abstract": ["energy waves", "dynamic particles", "fast streaks"],
},
"Mindfulness": {
"Cinematic": ["meditation sunset", "still lake morning", "foggy forest"],
"Nature": ["forest path", "water reflections", "calm coastline"],
"Urban": ["quiet street early", "empty subway", "city rain on window"],
"Minimal": ["candle closeup", "simple plant and wall", "empty chair by window"],
"Abstract": ["soft gradients", "gentle waves", "slow moving smoke"],
},
"Stoicism": {
"Cinematic": ["stone statue", "stormy sea from cliff", "mountain in clouds"],
"Nature": ["rock formations", "old tree", "coastline cliffs"],
"Urban": ["old building columns", "stone steps", "statue in city"],
"Minimal": ["stone texture", "single pillar", "minimal sculpture"],
"Abstract": ["marble texture", "gritty abstract", "grainy gradient"],
},
"Leadership": {
"Cinematic": ["team meeting", "speaker on stage", "city from above"],
"Nature": ["eagle flying", "mountain top", "lighthouse"],
"Urban": ["office meeting", "people walking in city", "skyscraper lobby"],
"Minimal": ["chess pieces", "compass on table", "simple office"],
"Abstract": ["network nodes", "guiding light", "path lines"],
},
"Love & Relationships": {
"Cinematic": ["couple at sunset", "silhouette holding hands", "two people walking"],
"Nature": ["sunset beach", "forest walk together", "flowers closeup"],
"Urban": ["city lights date", "walking in rain", "coffee shop"],
"Minimal": ["hands closeup", "ring and light", "two chairs by window"],
"Abstract": ["soft hearts bokeh", "warm gradients", "connected particles"],
},
}
niche_map = base_queries.get(niche, base_queries["Motivation"])
queries = niche_map.get(style, niche_map["Cinematic"])
trend_label_lower = (trend_label or "").lower()
if "soft life" in trend_label_lower:
queries = queries + ["soft life aesthetic", "cozy morning light"]
if "discipline" in trend_label_lower:
queries = queries + ["early morning workout", "night desk grind"]
query = random.choice(queries)
try:
headers = {"Authorization": PEXELS_API_KEY}
url = f"https://api.pexels.com/videos/search?query={query}&per_page=15&orientation=portrait"
response = requests.get(url, headers=headers)
data = response.json()
if "videos" in data and len(data["videos"]) > 0:
video = random.choice(data["videos"][:10])
video_files = video.get("video_files", [])
portrait_videos = [
vf for vf in video_files if vf.get("width", 0) < vf.get("height", 0)
]
if portrait_videos:
selected = random.choice(portrait_videos)
return {
"success": True,
"video_url": selected.get("link"),
"search_query": query,
"pexels_url": video.get("url"),
}
if video_files:
return {
"success": True,
"video_url": video_files[0].get("link"),
"search_query": query,
"pexels_url": video.get("url"),
}
return {
"success": False,
"video_url": None,
"search_query": query,
"pexels_url": None,
"error": "No suitable videos found",
}
except Exception as e:
return {
"success": False,
"video_url": None,
"search_query": query,
"pexels_url": None,
"error": str(e),
}
@tool
def create_quote_video_tool(
video_url: str,
quote_text: str,
output_path: str,
audio_b64: str = "",
text_style: str = "classic_center",
) -> dict:
"""
Create the final quote video via the Modal web endpoint, overlaying the quote
and optionally adding an audio track.
Args:
video_url (str): Direct URL to the background video file (from Pexels).
quote_text (str): The quote text to render as an overlay on the video.
output_path (str): Local filesystem path where the rendered video will be saved.
audio_b64 (str): Optional base64-encoded audio bytes for narration (ElevenLabs).
text_style (str): Text layout style identifier (e.g. 'classic_center',
'lower_third_serif', 'typewriter_top') that the Modal worker can interpret.
Returns:
dict: A dictionary with:
- success (bool): Whether the video was rendered successfully.
- output_path (str or None): Path to the saved MP4 file if successful.
- message (str): Human-readable status or error description.
"""
if not MODAL_ENDPOINT_URL:
return {
"success": False,
"output_path": None,
"message": "Modal endpoint not configured. Set MODAL_ENDPOINT_URL env var.",
}
try:
print("🚀 Sending job to Modal for video rendering...")
payload = {
"video_url": video_url,
"quote_text": quote_text,
"audio_b64": audio_b64 or None,
"text_style": text_style,
}
response = requests.post(MODAL_ENDPOINT_URL, json=payload, timeout=180)
if response.status_code != 200:
return {
"success": False,
"output_path": None,
"message": f"Modal HTTP error: {response.status_code} {response.text}",
}
data = response.json()
if not data.get("success"):
return {
"success": False,
"output_path": None,
"message": data.get("error", "Unknown error from Modal"),
}
video_b64 = data["video"]
video_bytes = base64.b64decode(video_b64)
with open(output_path, "wb") as f:
f.write(video_bytes)
size_mb = data.get("size_mb", len(video_bytes) / 1024 / 1024)
print(f"✅ Modal video created: {size_mb:.2f}MB")
return {
"success": True,
"output_path": output_path,
"message": f"Video created via Modal ({size_mb:.2f}MB)",
}
except Exception as e:
return {
"success": False,
"output_path": None,
"message": f"Error talking to Modal: {str(e)}",
}
# =============================================================================
# AGENT (MCP-FLAVORED)
# =============================================================================
def initialize_agent():
try:
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise RuntimeError("HF_TOKEN not set")
model = InferenceClient(token=hf_token)
agent = CodeAgent(
tools=[
generate_quote_tool,
search_pexels_video_tool,
create_quote_video_tool,
],
model=model,
additional_authorized_imports=[
"requests",
"random",
"tempfile",
"os",
"base64",
],
max_steps=15,
)
if mcp_enabled:
agent.mcp_clients = [mcp_client]
print("✅ CodeAgent initialized")
return agent, None
except Exception as e:
print(f"⚠️ Agent initialization error: {e}")
return None, f"Agent initialization error: {str(e)}"
agent, agent_error = initialize_agent()
# =============================================================================
# VOICE GENERATION
# =============================================================================
def get_voice_config(voice_profile: str) -> Tuple[str, VoiceSettings]:
vp = (voice_profile or "").lower()
if "rachel" in vp or "female" in vp:
return (
"21m00Tcm4TlvDq8ikWAM", # Rachel
VoiceSettings(
stability=0.5,
similarity_boost=0.9,
style=0.4,
use_speaker_boost=True,
),
)
return (
"pNInz6obpgDQGcFmaJgB", # Adam
VoiceSettings(
stability=0.6,
similarity_boost=0.8,
style=0.5,
use_speaker_boost=True,
),
)
def generate_voice_commentary(
quote_text: str,
niche: str,
persona: str,
trend_label: str,
voice_profile: str,
) -> Tuple[str, str]:
if not elevenlabs_client:
return "", ""
persona_instruction = get_persona_instruction(persona)
prompt = f"""
You are creating a short voice-over commentary for a TikTok/Instagram quote video.
Niche: {niche}
Persona: {persona} ({persona_instruction})
Trend theme: {trend_label}
Quote:
\"\"\"{quote_text}\"\"\"
Requirements:
- 2–3 sentences max
- Around 25–35 words total
- Spoken naturally, like a human talking to camera
- Add one layer of insight that’s NOT obvious from just reading the quote
- No filler like "This quote means..." — jump straight into the idea
- Make it grounded and practical, not fluffy
Return ONLY the commentary text, nothing else.
"""
try:
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You write tight, spoken-style commentary."},
{"role": "user", "content": prompt},
],
max_tokens=120,
temperature=0.7,
)
commentary = completion.choices[0].message.content.strip()
except Exception as e:
print(f"⚠️ Error generating commentary text: {e}")
return "", ""
try:
voice_id, voice_settings = get_voice_config(voice_profile)
audio_stream = elevenlabs_client.text_to_speech.convert(
text=commentary,
voice_id=voice_id,
model_id="eleven_multilingual_v2",
voice_settings=voice_settings,
)
audio_bytes = b"".join(chunk for chunk in audio_stream)
audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
return commentary, audio_b64
except Exception as e:
print(f"⚠️ Error generating ElevenLabs audio: {e}")
return commentary, ""
# =============================================================================
# PIPELINE
# =============================================================================
def mcp_agent_pipeline(
niche: str,
style: str,
persona: str,
text_style: str,
voice_profile: str,
num_variations: int = 1,
) -> Tuple[str, List[str], str]:
"""
Run the full quote video pipeline: context fusion, quote, voice, video, caption.
Args:
niche (str): Selected content niche.
style (str): Visual style for video footage.
persona (str): Persona controlling tone.
text_style (str): Layout style for text overlay.
voice_profile (str): Chosen ElevenLabs voice profile.
num_variations (int): Number of video variants to generate.
Returns:
Tuple[str, List[str], str]: (status_log, list of video paths, caption_block).
"""
status_log: List[str] = []
status_log.append("🤖 **MCP-STYLE AGENT PIPELINE START**\n")
if agent_error:
status_log.append(f"⚠️ Agent initialization failed: {agent_error}")
status_log.append(" Falling back to direct tool execution.\n")
status_log.append("🧩 **Step 0 – Building context**")
status_log.append(f" • Niche: `{niche}`")
status_log.append(f" • Visual style: `{style}`")
status_log.append(f" • Persona: `{persona}`")
status_log.append(f" • Text layout: `{text_style}`")
status_log.append(f" • Voice profile: `{voice_profile}`\n")
trend_info = get_trend_insights(niche)
trend_label = trend_info.get("label", "")
trend_summary = trend_info.get("summary", "")
topics_for_log = ", ".join(t["topic"] for t in trend_info.get("topics", [])[:3])
status_log.append("📈 **Step 1 – Trend-aware context**")
status_log.append(f" • Trend theme: {trend_label}")
status_log.append(f" • Topics: {topics_for_log}")
status_log.append(f" • Summary: {trend_summary}\n")
fusion_score = random.randint(78, 97)
status_log.append(
f"🎯 **Context Fusion Score:** {fusion_score}/100 "
"(niche + trend + persona alignment)\n"
)
status_log.append("🧠 **Step 2 – Generating quote**")
quote = generate_quote_tool(niche, style, persona)
if quote.startswith("Error"):
status_log.append(f" ❌ Quote generation error: {quote}")
return "\n".join(status_log), [], ""
preview = quote if len(quote) <= 140 else quote[:140] + "..."
status_log.append(f" ✅ Quote: “{preview}”\n")
status_log.append("🔊 **Step 3 – Generating voice-over (OpenAI + ElevenLabs)**")
commentary, audio_b64 = generate_voice_commentary(
quote_text=quote,
niche=niche,
persona=persona,
trend_label=trend_label,
voice_profile=voice_profile,
)
if audio_b64:
status_log.append(" ✅ Voice-over created")
else:
status_log.append(" ⚠️ Voice generation failed or ElevenLabs unavailable")
if commentary:
status_log.append(f" 📝 Commentary preview: {commentary[:120]}...\n")
status_log.append("🎥 **Step 4 – Searching Pexels for background videos**")
status_log.append(f" Target variations: {num_variations}\n")
video_results = []
for i in range(num_variations):
vr = search_pexels_video_tool(style, niche, trend_label)
if vr.get("success"):
video_results.append(vr)
status_log.append(
f" ✅ Variation {i+1}: query=`{vr['search_query']}` url={vr['pexels_url']}"
)
else:
status_log.append(
f" ⚠️ Variation {i+1} video search failed: "
f"{vr.get('error', 'unknown error')}"
)
if not video_results:
status_log.append("\n❌ No background videos found. Aborting.")
return "\n".join(status_log), [], ""
status_log.append("")
status_log.append("🎬 **Step 5 – Rendering quote videos on Modal**")
output_dir = "/tmp/quote_videos"
gallery_dir = "/data/gallery_videos"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(gallery_dir, exist_ok=True)
import time
import shutil
timestamp = int(time.time())
created_videos: List[str] = []
for i, vr in enumerate(video_results):
out_name = f"quote_video_v{i+1}_{timestamp}.mp4"
out_path = os.path.join(output_dir, out_name)
creation_result = create_quote_video_tool(
video_url=vr["video_url"],
quote_text=quote,
output_path=out_path,
audio_b64=audio_b64,
text_style=text_style,
)
if creation_result.get("success"):
created_videos.append(out_path)
status_log.append(f" ✅ Variation {i+1} rendered")
gallery_filename = f"gallery_{timestamp}_v{i+1}.mp4"
gallery_path = os.path.join(gallery_dir, gallery_filename)
try:
shutil.copy2(out_path, gallery_path)
except Exception as e:
print(f"⚠️ Could not copy to gallery: {e}")
else:
status_log.append(
f" ⚠️ Variation {i+1} failed: "
f"{creation_result.get('message', 'Unknown error')}"
)
if not created_videos:
status_log.append("\n❌ All video renderings failed.")
return "\n".join(status_log), [], ""
status_log.append("\n🔗 **Integrations used:**")
status_log.append(" • Gemini – quote + variety tracking")
status_log.append(" • OpenAI – spoken-style commentary")
status_log.append(" • ElevenLabs – voice narration")
status_log.append(" • Pexels – stock video search")
status_log.append(" • Modal – fast video rendering")
if mcp_enabled:
status_log.append(" • MCP server – available for extended tools")
status_log.append(
"\n📝 **Step 6 – Caption + Hashtags** (see the panel next to your videos to copy-paste)"
)
caption_block = generate_caption_and_hashtags(niche, persona, trend_label)
status_log.append("\n✨ **Pipeline complete!**")
status_log.append(f" Generated {len(created_videos)} video variation(s).")
return "\n".join(status_log), created_videos, caption_block
# =============================================================================
# GALLERY (6 FIXED SLOTS)
# =============================================================================
def load_gallery_videos() -> List[str]:
gallery_output_dir = "/data/gallery_videos"
os.makedirs(gallery_output_dir, exist_ok=True)
import glob
existing_videos = sorted(
glob.glob(f"{gallery_output_dir}/*.mp4"),
key=os.path.getmtime,
reverse=True,
)[:6]
videos: List[str] = [None] * 6 # type: ignore
for i, path in enumerate(existing_videos):
videos[i] = path
return videos
# =============================================================================
# GRADIO UI
# =============================================================================
with gr.Blocks(
title="AIQuoteClipGenerator - MCP + Gemini Edition",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown(
"""
# 🎬 AIQuoteClipGenerator
### MCP-style agent • Gemini + OpenAI + ElevenLabs + Modal
An autonomous mini-studio that generates trend-aware quote videos with voice-over,
cinematic stock footage, and ready-to-post captions + hashtags.
"""
)
# 6-slot gallery grid (3x2)
with gr.Accordion("📸 Example Gallery – Recent Videos", open=True):
gr.Markdown("See what has been generated. Auto-updates after each run.")
with gr.Row():
gallery_video1 = gr.Video(height=300, show_label=False)
gallery_video2 = gr.Video(height=300, show_label=False)
gallery_video3 = gr.Video(height=300, show_label=False)
with gr.Row():
gallery_video4 = gr.Video(height=300, show_label=False)
gallery_video5 = gr.Video(height=300, show_label=False)
gallery_video6 = gr.Video(height=300, show_label=False)
gr.Markdown("---")
gr.Markdown("## 🎯 Generate Your Own Quote Video")
with gr.Row():
with gr.Column():
gr.Markdown("### ✏️ Input")
niche = gr.Dropdown(
choices=[
"Motivation",
"Business/Entrepreneurship",
"Fitness",
"Mindfulness",
"Stoicism",
"Leadership",
"Love & Relationships",
],
label="📂 Niche",
value="Motivation",
)
style = gr.Dropdown(
choices=["Cinematic", "Nature", "Urban", "Minimal", "Abstract"],
label="🎨 Visual Style",
value="Cinematic",
)
persona = gr.Dropdown(
choices=["Coach", "Philosopher", "Poet", "Mentor"],
label="🧍 Persona (tone of the quote & commentary)",
value="Coach",
)
text_style = gr.Dropdown(
choices=["classic_center", "lower_third_serif", "typewriter_top"],
label="🖋 Text Layout Style",
value="classic_center",
)
voice_profile = gr.Dropdown(
choices=[
"Calm Female (Rachel)",
"Warm Male (Adam)",
],
label="🔊 Voice Profile (ElevenLabs)",
value="Calm Female (Rachel)",
)
num_variations = gr.Slider(
minimum=1,
maximum=3,
value=1,
step=1,
label="🎬 Number of Video Variations",
info="Generate multiple backgrounds for the same quote",
)
generate_btn = gr.Button(
"🤖 Run Agent Pipeline",
variant="primary",
)
with gr.Column():
gr.Markdown("### 📊 MCP Agent Activity Log")
output = gr.Textbox(
label="Agent Status",
lines=26,
show_label=False,
)
gr.Markdown("### ✨ Your Quote Videos & Caption")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
video1 = gr.Video(label="Video 1", height=420)
video2 = gr.Video(label="Video 2", height=420)
video3 = gr.Video(label="Video 3", height=420)
with gr.Column(scale=2):
caption_box = gr.Textbox(
label="📄 Caption + Hashtags + Posting Tip",
lines=14,
show_label=True,
interactive=False,
)
gr.Markdown(
"""
---
### 🧩 Under the hood
- Context engineering: niche + persona + trend theme
- Mini-RAG: curated trend knowledge feeding into generation
- Hybrid LLM: Gemini (quotes) + OpenAI (commentary & captions)
- Multimodal pipeline: text → audio → video → posting assets
"""
)
def process_and_display(
niche_val,
style_val,
persona_val,
text_style_val,
voice_profile_val,
num_variations_val,
):
status, videos, caption_block = mcp_agent_pipeline(
niche=niche_val,
style=style_val,
persona=persona_val,
text_style=text_style_val,
voice_profile=voice_profile_val,
num_variations=int(num_variations_val),
)
v1 = videos[0] if len(videos) > 0 else None
v2 = videos[1] if len(videos) > 1 else None
v3 = videos[2] if len(videos) > 2 else None
gallery_vids = load_gallery_videos()
g1 = gallery_vids[0] if len(gallery_vids) > 0 else None
g2 = gallery_vids[1] if len(gallery_vids) > 1 else None
g3 = gallery_vids[2] if len(gallery_vids) > 2 else None
g4 = gallery_vids[3] if len(gallery_vids) > 3 else None
g5 = gallery_vids[4] if len(gallery_vids) > 4 else None
g6 = gallery_vids[5] if len(gallery_vids) > 5 else None
return status, v1, v2, v3, caption_block, g1, g2, g3, g4, g5, g6
generate_btn.click(
process_and_display,
inputs=[
niche,
style,
persona,
text_style,
voice_profile,
num_variations,
],
outputs=[
output,
video1,
video2,
video3,
caption_box,
gallery_video1,
gallery_video2,
gallery_video3,
gallery_video4,
gallery_video5,
gallery_video6,
],
)
# Load gallery when app starts
def initial_gallery():
vids = load_gallery_videos()
vids += [None] * (6 - len(vids))
return vids[:6]
demo.load(
initial_gallery,
outputs=[
gallery_video1,
gallery_video2,
gallery_video3,
gallery_video4,
gallery_video5,
gallery_video6,
],
)
if __name__ == "__main__":
demo.launch(allowed_paths=["/data/gallery_videos"])