File size: 13,051 Bytes
b942332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
Multi-Model Router - Intelligent model selection for optimal performance
Integrates Claude, Gemini, and GPT-4 with automatic routing
"""

import os
from typing import Dict, Any, List, Optional, Literal
from enum import Enum
import asyncio
from dotenv import load_dotenv
from anthropic import AsyncAnthropic
from openai import AsyncOpenAI
import google.generativeai as genai
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage

# Load environment variables before initializing clients
load_dotenv()


class ModelType(Enum):
    """Available AI models"""
    CLAUDE_SONNET = "claude-sonnet-4-20250514"  # Best for reasoning, code generation
    GEMINI_2_FLASH = "gemini-2.0-flash-exp"  # Best for multimodal, speed
    GPT4O_MINI = "gpt-4o-mini"  # Best for planning, routing decisions


class TaskType(Enum):
    """Task types for intelligent routing"""
    REASONING = "reasoning"  # Complex logic, analysis
    CODE_GEN = "code_generation"  # MCP server generation
    MULTIMODAL = "multimodal"  # Images, audio, video
    PLANNING = "planning"  # Task breakdown, routing
    FAST_QUERY = "fast_query"  # Quick responses
    VISION = "vision"  # Image analysis
    AUDIO = "audio"  # Audio processing


class MultiModelRouter:
    """
    Intelligent multi-model router that selects the best AI model for each task.

    Prize Integration:
    - Google Gemini: $10K prize for multimodal capabilities
    - Anthropic Claude: Core reasoning engine
    - OpenAI GPT-4: Planning and routing
    """

    def __init__(self):
        self.anthropic_key = os.getenv("ANTHROPIC_API_KEY")
        self.openai_key = os.getenv("OPENAI_API_KEY")
        self.google_key = os.getenv("GOOGLE_API_KEY")

        # Initialize clients
        self.anthropic_client = AsyncAnthropic(api_key=self.anthropic_key) if self.anthropic_key else None
        self.openai_client = AsyncOpenAI(api_key=self.openai_key) if self.openai_key else None

        if self.google_key:
            genai.configure(api_key=self.google_key)

        # LangChain clients for agent integration
        self.claude_lc = ChatAnthropic(
            model=ModelType.CLAUDE_SONNET.value,
            api_key=self.anthropic_key,
            temperature=0.7
        ) if self.anthropic_key else None

        self.gpt_lc = ChatOpenAI(
            model=ModelType.GPT4O_MINI.value,
            api_key=self.openai_key,
            temperature=0.7
        ) if self.openai_key else None

        self.gemini_lc = ChatGoogleGenerativeAI(
            model=ModelType.GEMINI_2_FLASH.value,
            google_api_key=self.google_key,
            temperature=0.7
        ) if self.google_key else None

        # Routing rules: Task type -> Best model
        self.routing_rules = {
            TaskType.REASONING: ModelType.CLAUDE_SONNET,
            TaskType.CODE_GEN: ModelType.CLAUDE_SONNET,
            TaskType.MULTIMODAL: ModelType.GEMINI_2_FLASH,
            TaskType.PLANNING: ModelType.GPT4O_MINI,
            TaskType.FAST_QUERY: ModelType.GEMINI_2_FLASH,
            TaskType.VISION: ModelType.GEMINI_2_FLASH,
            TaskType.AUDIO: ModelType.GEMINI_2_FLASH,
        }

        # Cost tracking (per 1M tokens)
        self.model_costs = {
            ModelType.CLAUDE_SONNET: {"input": 3.0, "output": 15.0},
            ModelType.GEMINI_2_FLASH: {"input": 0.0, "output": 0.0},  # Free tier
            ModelType.GPT4O_MINI: {"input": 0.15, "output": 0.60},
        }

        self.usage_stats = {
            "claude": {"requests": 0, "tokens": 0, "cost": 0.0},
            "gemini": {"requests": 0, "tokens": 0, "cost": 0.0},
            "gpt4": {"requests": 0, "tokens": 0, "cost": 0.0},
        }

    def select_model(self, task_type: TaskType, prefer_cost_efficient: bool = False) -> ModelType:
        """
        Intelligently select the best model for a task.

        Args:
            task_type: Type of task to perform
            prefer_cost_efficient: Prefer cheaper models when possible

        Returns:
            Selected model type
        """
        base_model = self.routing_rules.get(task_type, ModelType.CLAUDE_SONNET)

        # If cost-efficient mode, prefer Gemini (free tier) or GPT-4o-mini
        if prefer_cost_efficient:
            if task_type in [TaskType.MULTIMODAL, TaskType.FAST_QUERY, TaskType.VISION]:
                return ModelType.GEMINI_2_FLASH
            elif task_type == TaskType.PLANNING:
                return ModelType.GPT4O_MINI

        return base_model

    async def generate(
        self,
        prompt: str,
        task_type: TaskType = TaskType.REASONING,
        system_prompt: Optional[str] = None,
        max_tokens: int = 4000,
        temperature: float = 0.7,
        image_url: Optional[str] = None,
        audio_data: Optional[bytes] = None,
        stream: bool = False,
    ) -> Dict[str, Any]:
        """
        Generate response using the best model for the task.

        Args:
            prompt: User prompt
            task_type: Type of task
            system_prompt: System instructions
            max_tokens: Maximum response length
            temperature: Creativity (0-1)
            image_url: URL for image analysis (Gemini multimodal)
            audio_data: Audio bytes for analysis (Gemini)
            stream: Stream response tokens

        Returns:
            Dict with response, model used, tokens, cost
        """
        model = self.select_model(task_type)

        # Force Gemini for multimodal tasks
        if image_url or audio_data:
            model = ModelType.GEMINI_2_FLASH

        try:
            if model == ModelType.CLAUDE_SONNET:
                return await self._generate_claude(prompt, system_prompt, max_tokens, temperature, stream)
            elif model == ModelType.GEMINI_2_FLASH:
                return await self._generate_gemini(prompt, system_prompt, max_tokens, temperature, image_url, audio_data)
            elif model == ModelType.GPT4O_MINI:
                return await self._generate_gpt(prompt, system_prompt, max_tokens, temperature, stream)
        except Exception as e:
            # Fallback to Claude if primary model fails
            if model != ModelType.CLAUDE_SONNET:
                return await self._generate_claude(prompt, system_prompt, max_tokens, temperature, stream)
            raise e

    async def _generate_claude(
        self,
        prompt: str,
        system_prompt: Optional[str],
        max_tokens: int,
        temperature: float,
        stream: bool
    ) -> Dict[str, Any]:
        """Generate using Claude Sonnet"""
        if not self.anthropic_client:
            raise ValueError("Anthropic API key not configured")

        messages = [{"role": "user", "content": prompt}]

        response = await self.anthropic_client.messages.create(
            model=ModelType.CLAUDE_SONNET.value,
            max_tokens=max_tokens,
            temperature=temperature,
            system=system_prompt or "You are a helpful AI assistant.",
            messages=messages,
            stream=stream
        )

        if stream:
            return {"response": response, "model": "claude", "streaming": True}

        content = response.content[0].text
        input_tokens = response.usage.input_tokens
        output_tokens = response.usage.output_tokens
        cost = self._calculate_cost(ModelType.CLAUDE_SONNET, input_tokens, output_tokens)

        # Update stats
        self.usage_stats["claude"]["requests"] += 1
        self.usage_stats["claude"]["tokens"] += input_tokens + output_tokens
        self.usage_stats["claude"]["cost"] += cost

        return {
            "response": content,
            "model": "claude-sonnet-4",
            "input_tokens": input_tokens,
            "output_tokens": output_tokens,
            "total_tokens": input_tokens + output_tokens,
            "cost": cost,
            "streaming": False
        }

    async def _generate_gemini(
        self,
        prompt: str,
        system_prompt: Optional[str],
        max_tokens: int,
        temperature: float,
        image_url: Optional[str] = None,
        audio_data: Optional[bytes] = None
    ) -> Dict[str, Any]:
        """Generate using Gemini 2.0 Flash (multimodal support)"""
        if not self.google_key:
            raise ValueError("Google API key not configured")

        model = genai.GenerativeModel(
            ModelType.GEMINI_2_FLASH.value,
            system_instruction=system_prompt
        )

        # Build multimodal content
        content_parts = []
        if image_url:
            # For image analysis
            import httpx
            async with httpx.AsyncClient() as client:
                img_response = await client.get(image_url)
                img_data = img_response.content
            content_parts.append({"mime_type": "image/jpeg", "data": img_data})

        if audio_data:
            content_parts.append({"mime_type": "audio/wav", "data": audio_data})

        content_parts.append(prompt)

        response = await model.generate_content_async(
            content_parts,
            generation_config=genai.GenerationConfig(
                max_output_tokens=max_tokens,
                temperature=temperature
            )
        )

        content = response.text

        # Gemini free tier - no cost tracking
        self.usage_stats["gemini"]["requests"] += 1

        return {
            "response": content,
            "model": "gemini-2.0-flash",
            "input_tokens": 0,  # Not provided in free tier
            "output_tokens": 0,
            "total_tokens": 0,
            "cost": 0.0,
            "streaming": False,
            "multimodal": bool(image_url or audio_data)
        }

    async def _generate_gpt(
        self,
        prompt: str,
        system_prompt: Optional[str],
        max_tokens: int,
        temperature: float,
        stream: bool
    ) -> Dict[str, Any]:
        """Generate using GPT-4o-mini"""
        if not self.openai_client:
            raise ValueError("OpenAI API key not configured")

        messages = [
            {"role": "system", "content": system_prompt or "You are a helpful AI assistant."},
            {"role": "user", "content": prompt}
        ]

        response = await self.openai_client.chat.completions.create(
            model=ModelType.GPT4O_MINI.value,
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            stream=stream
        )

        if stream:
            return {"response": response, "model": "gpt-4o-mini", "streaming": True}

        content = response.choices[0].message.content
        input_tokens = response.usage.prompt_tokens
        output_tokens = response.usage.completion_tokens
        cost = self._calculate_cost(ModelType.GPT4O_MINI, input_tokens, output_tokens)

        # Update stats
        self.usage_stats["gpt4"]["requests"] += 1
        self.usage_stats["gpt4"]["tokens"] += input_tokens + output_tokens
        self.usage_stats["gpt4"]["cost"] += cost

        return {
            "response": content,
            "model": "gpt-4o-mini",
            "input_tokens": input_tokens,
            "output_tokens": output_tokens,
            "total_tokens": input_tokens + output_tokens,
            "cost": cost,
            "streaming": False
        }

    def _calculate_cost(self, model: ModelType, input_tokens: int, output_tokens: int) -> float:
        """Calculate cost for API usage"""
        costs = self.model_costs[model]
        input_cost = (input_tokens / 1_000_000) * costs["input"]
        output_cost = (output_tokens / 1_000_000) * costs["output"]
        return input_cost + output_cost

    def get_usage_stats(self) -> Dict[str, Any]:
        """Get usage statistics across all models"""
        total_cost = sum(stats["cost"] for stats in self.usage_stats.values())
        total_requests = sum(stats["requests"] for stats in self.usage_stats.values())

        return {
            "total_requests": total_requests,
            "total_cost": round(total_cost, 4),
            "by_model": self.usage_stats,
            "cost_breakdown": {
                "claude": round(self.usage_stats["claude"]["cost"], 4),
                "gemini": round(self.usage_stats["gemini"]["cost"], 4),
                "gpt4": round(self.usage_stats["gpt4"]["cost"], 4),
            }
        }

    def get_langchain_model(self, task_type: TaskType):
        """Get LangChain-compatible model for agent integration"""
        model = self.select_model(task_type)

        if model == ModelType.CLAUDE_SONNET:
            return self.claude_lc
        elif model == ModelType.GEMINI_2_FLASH:
            return self.gemini_lc
        elif model == ModelType.GPT4O_MINI:
            return self.gpt_lc

        return self.claude_lc  # Default fallback


# Global router instance
router = MultiModelRouter()