TraceMind / README.md
Mandark-droid
Fix README short_description to meet HF 60 char limit
98dc4d3
|
raw
history blame
6.31 kB
---
title: TraceMind AI
emoji: πŸ”
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
short_description: AI agent evaluation with MCP-powered intelligence
pinned: false
tags:
- mcp-in-action-track-enterprise
- agent-evaluation
- mcp-client
- leaderboard
- gradio
---
# πŸ” TraceMind-AI
Agent Evaluation Platform with MCP-Powered Intelligence
## Overview
TraceMind-AI is a comprehensive platform for evaluating AI agent performance across different models, providers, and configurations. It provides real-time insights, cost analysis, and detailed trace visualization powered by the Model Context Protocol (MCP).
## Features
- **πŸ“Š Real-time Leaderboard**: Live evaluation data from HuggingFace datasets
- **πŸ€– MCP Integration**: AI-powered analysis using remote MCP servers
- **πŸ’° Cost Estimation**: Calculate evaluation costs for different models and configurations
- **πŸ” Trace Visualization**: Detailed OpenTelemetry trace analysis
- **πŸ“ˆ Performance Metrics**: GPU utilization, CO2 emissions, token usage tracking
## MCP Integration
TraceMind-AI demonstrates enterprise MCP client usage by connecting to [TraceMind-mcp-server](https://huggingface.co/spaces/kshitijthakkar/TraceMind-mcp-server) via the Model Context Protocol.
**MCP Tools Used:**
- `analyze_leaderboard` - AI-generated insights about evaluation trends
- `estimate_cost` - Cost estimation with hardware recommendations
- `debug_trace` - Interactive trace analysis and debugging
- `compare_runs` - Side-by-side run comparison
- `analyze_results` - Test case analysis with optimization recommendations
## Quick Start
### Prerequisites
- Python 3.10+
- HuggingFace account (for authentication)
- HuggingFace token (optional, for private datasets)
### Installation
1. Clone the repository:
```bash
git clone https://github.com/Mandark-droid/TraceMind-AI.git
cd TraceMind-AI
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Configure environment:
```bash
cp .env.example .env
# Edit .env with your configuration
```
4. Run the application:
```bash
python app.py
```
Visit http://localhost:7860
## Configuration
Create a `.env` file with the following variables:
```env
# HuggingFace Configuration
HF_TOKEN=your_token_here
# MCP Server URL
MCP_SERVER_URL=https://kshitijthakkar-tracemind-mcp-server.hf.space/gradio_api/mcp/
# Dataset Configuration
LEADERBOARD_REPO=kshitijthakkar/smoltrace-leaderboard
# Development Mode (optional - disables OAuth for local testing)
DISABLE_OAUTH=true
```
## Data Sources
TraceMind-AI loads evaluation data from HuggingFace datasets:
- **Leaderboard**: Aggregate statistics for all evaluation runs
- **Results**: Individual test case results
- **Traces**: OpenTelemetry trace data
- **Metrics**: GPU metrics and performance data
## Architecture
### Project Structure
```
TraceMind-AI/
β”œβ”€β”€ app.py # Main Gradio application
β”œβ”€β”€ data_loader.py # HuggingFace dataset integration
β”œβ”€β”€ mcp_client/ # MCP client implementation
β”‚ β”œβ”€β”€ client.py # Async MCP client
β”‚ └── sync_wrapper.py # Synchronous wrapper
β”œβ”€β”€ utils/ # Utilities
β”‚ β”œβ”€β”€ auth.py # HuggingFace OAuth
β”‚ └── navigation.py # Screen navigation
β”œβ”€β”€ screens/ # UI screens
β”œβ”€β”€ components/ # Reusable components
└── styles/ # Custom CSS
```
### MCP Client Integration
TraceMind-AI uses the MCP Python SDK to connect to remote MCP servers:
```python
from mcp_client.sync_wrapper import get_sync_mcp_client
# Initialize MCP client
mcp_client = get_sync_mcp_client()
mcp_client.initialize()
# Call MCP tools
insights = mcp_client.analyze_leaderboard(
metric_focus="overall",
time_range="last_week",
top_n=5
)
```
## Usage
### Viewing the Leaderboard
1. Log in with your HuggingFace account
2. Navigate to the "Leaderboard" tab
3. Click "Load Leaderboard" to fetch the latest data
4. View AI-powered insights generated by the MCP server
### Estimating Costs
1. Navigate to the "Cost Estimator" tab
2. Enter the model name (e.g., `openai/gpt-4`)
3. Select agent type and number of tests
4. Click "Estimate Cost" for AI-powered analysis
### Viewing Trace Details
1. Select an evaluation run from the leaderboard
2. Click on a specific test case
3. View detailed OpenTelemetry trace visualization
4. Ask questions about the trace using MCP-powered analysis
## Technology Stack
- **UI Framework**: Gradio 5.49.1
- **MCP Protocol**: MCP integration via Gradio
- **Data**: HuggingFace Datasets API
- **Authentication**: HuggingFace OAuth
- **AI**: Google Gemini 2.5 Flash (via MCP server)
## Development
### Running Locally
```bash
# Install dependencies
pip install -r requirements.txt
# Set development mode (optional - disables OAuth)
export DISABLE_OAUTH=true
# Run the app
python app.py
```
### Running on HuggingFace Spaces
This application is configured for deployment on HuggingFace Spaces using the Gradio SDK. The `app.py` file serves as the entry point.
## Documentation
For detailed implementation documentation, see:
- [Data Loader API](data_loader.py) - Dataset loading and caching
- [MCP Client API](mcp_client/client.py) - MCP protocol integration
- [Authentication](utils/auth.py) - HuggingFace OAuth integration
## Demo Video
[Link to demo video showing the application in action]
## Social Media
[Link to social media post about this project]
## License
MIT License - See LICENSE file for details
## Contributing
Contributions are welcome! Please open an issue or submit a pull request.
## Acknowledgments
- **MCP Team** - For the Model Context Protocol specification
- **Gradio Team** - For Gradio 6 with MCP integration
- **HuggingFace** - For Spaces hosting and dataset infrastructure
- **Google** - For Gemini API access
## Links
- **Live Demo**: https://huggingface.co/spaces/kshitijthakkar/TraceMind-AI
- **MCP Server**: https://huggingface.co/spaces/kshitijthakkar/TraceMind-mcp-server
- **GitHub**: https://github.com/Mandark-droid/TraceMind-AI
- **MCP Specification**: https://modelcontextprotocol.io
---
**MCP's 1st Birthday Hackathon Submission**
*Track: MCP in Action - Enterprise*